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EXECUTIVE SUMMARY 

Digital forms of citizen communication with response organizations through social media continue 

to be widespread during disasters and will continue to be used for the foreseeable future. Public 

agencies can use this information to examine community sentiments and discussions to assess, 

determine, and prioritize critical areas in need of assistance. However, there are privacy and data 

volume concerns, along with limitations on harnessing precise geolocation information from social 

media coupled with a need to mitigate bias of machine learning models used during such events. 

These limitations can restrict emergency management personnel’s ability to locate and promptly 

delineate actionable insights and discourages stakeholders from fully harnessing the potential of 

social media to provide valuable information in crisis response. 

This project explores the potential of integrating social media data (i.e., Twitter/X) with data from 

community awareness applications (i.e., Waze) to bolster crisis communication and enhance the 

accuracy and promptness of incident identification, assessment and reporting during emergencies. 

To navigate the challenges posed by varied data formats and the online nature of this information, 

the research employs a multi-pronged approach. This includes; (1) interviews with multiple state 

DOTs for insights on event detection software implementation and experience with social media 

and community data, (2) the development of a weighted competency matrix built from factors 

identified in the literature and from the aforementioned state DOT interviews to assess existing 

event detection software solutions, and (3) the development and application of unique machine 

learning frameworks aimed at optimizing data integration and amplifying social media to augment 

DOT crisis event detection. 

The interviews reveal that among state DOTs interviewed RITIS is widely used for event detection. 

Although RITIS is highly versatile, it was learned that social media data is not being ingested into 
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its current processes or systems for event detection. The competency matrix developed is used to 

evaluate promising event detection software, which was found to lack functionality to automate 

the fusion of social media data into community data streams for event detection. To address this 

gap, two applications were developed by the research team to test the feasibility and precision of 

integrating social media into DOT systems that ingest community data (i.e., Waze) with tailored 

models. The first application counters the aforementioned limitations by proposing a semi-

supervised machine learning model that utilizes Transfer Learning, Topic Modeling (i.e., LDA), 

and Natural Language Processing. By merging historical social media data with community-driven 

alerts, this model augments the understanding of emergency event locations and contexts while 

mitigating biases using the Wells-DuBois Protocol. The efficacy of the model is illustrated through 

a case study application on hurricanes. This fusion promises heightened situational awareness and 

improved response times, establishing a foundation for equitable, real-time crisis detection. The 

second model and application delves into the role of probabilistic topic models analyzing online 

data in real time. Applying such a model to online user-generated content poses challenges due to 

sparse relevant data. To address this, a novel approach was executed that integrates variational 

lower bounds with a linear reward function, enhancing model interpretability and precision. An 

empirical application validates this enhancement, showcasing improved data labeling and 

similarity metrics. This second advanced modeling approach significantly boosts the potential of 

topic models, as well as improves information management, anomaly detection, and resource 

allocation, which are critical for adaptive decision-making in evolving crisis event conditions. 

  



 

3  

1 INTRODUCTION 

Growing levels of social media engagement among urban communities provide organizations such 

as the Georgia Department of Transportation (GDOT) with growing opportunities for raising 

situational awareness in their operation and response decision making, particularly in the event of 

a crisis. Communities are increasingly utilizing social media for providing local information and 

sharing their personal experiences online. Those in need reciprocally expect rapid response from 

organizations to issues that arise and seek attention and/or help through social and community 

applications in the event of emergency in return. Crisis events, whether it be in the course of routine 

operations (e.g., road maintenance) or in the event of an emergency, (e.g. hurricane, tornado) can 

result in substantial social, environmental, and economic impact on the life of Georgia residents. 

In order to use social media for emergency operations, however, data collection is heavily 

dependent on citizen participation and location information. With social media platforms, such as 

Twitter/X, the amount of posts made by citizens can fluctuate depending on the crisis event.  

1.1 Social Media Applicability to GDOT 

Waze, is a crowd-sourced navigation community application that utilizes real-time data from its 

user community to provide dynamic and efficient route suggestions, incorporating features like 

gamification, voice navigation, and social interaction. Waze is currently being utilized in GDOT’s 

existing Advanced Traffic Management System (ATMS). Waze uses crowdsourced data from 

drivers, including geolocation and timestamp information, to provide real-time and location-

specific insights about road conditions with a high degree of accuracy (Amin-Naseri, 2018). Waze 

users submit data through the application, including hazard type and descriptors, and an ATMS is 

employed to reconcile and aggregate this information by clustering and similarity-matching user 

reports, making Waze a leading system in detecting traffic incidents, although its reliability 
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diminishes during nighttime with lower road activity. For instance, Iowa’s ATMS found that Waze 

initially recorded 13.4% of congestion and crashes in 2018. It was, however, found to be less 

reliable during the nighttime, when fewer people were on the road (Amin-Naseri, 2018). 

While Twitter/X has been explored for identifying congestion and traffic, challenges persist in 

filtering Tweets for pertinent text and precise geolocation data, despite ongoing improvements in 

this aspect (D'Andrea, 2015, and Gu, 2016). Moreover, there is a growing scarcity of posts 

featuring precise, geotagged location data. Instead, many provide a general place or bounding box 

location of the post's origin. This underscores the necessity to enhance social media data containing 

community awareness information with a supplementary platform. This platform should 

complement and address the gaps in both data volume and location information currently present 

in social media. Only then can this augmented system be seamlessly integrated into existing 

Department of Transportation (DOT) crisis identification and response management processes. 

Community augmented processes and systems that can detect and track crises in near-real-time 

would be a critical component of rapid crises identification and response deployment decisions. 

Crucially, a more immediate identification and response management system can provide 

information to reduce potential casualties and damages and improve allocation of scarce resources. 

1.2 Georgia-specific Crises 

Global weather patterns are becoming more erratic and challenging to predict, with Georgia 

experiencing the impacts of increasingly intense and frequent extreme weather events (Noy, 2016). 

Despite Georgia's historical susceptibility to hurricanes and tropical storms, the city of Atlanta, 

located hundreds of miles inland, found itself under its first Tropical Storm warning in 2017 due 

to Hurricane Irma. Hurricane Irma had significant consequences, resulting in three fatalities and 

prompting inland evacuation orders for 540,000 coastal residents. This resulted in a range of 
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emergent crises, including stranded residents in rising storm surge, shortages of essential resources 

such as gas, water, and food, power outages, infrastructure failures, fires, traffic jams, traffic 

incidents, evacuation barriers, looting, and other situations necessitating rapid response and 

emergency assistance. 

In such time-critical circumstances, where traditional communication channels such as 911 may 

prove ineffective (e.g., people unable to make phone calls, emergency telephone hotlines jammed, 

or emergency responders unable to assess the relative gravity of different crises), residents 

increasingly turn to social media for assistance, sometimes even resorting to posting their full 

addresses in desperation.  

Additionally, in terms of meteorological events, Atlanta is challenged by having a large population 

and infrequent snow and ice. Previous winter storm events have shut the city down, generated 

large amounts of panic, and trapped citizens on icy roads for hours at a time. As most Atlanta 

citizens have relatively little experience driving on icy roads and understanding the dangers 

associated with them, it can be critical for GDOT to address icy roads before a driver can encounter 

the hazard. 

Ultimately, social media is currently a relatively untapped resource with respect to its ability to 

identify on-road emergencies, provide additional information such as severity and human impact 

for existing incidents, and its generalizability for many different kinds of events. In detecting and 

responding to emergencies, any information that can increase reaction time or level of 

preparedness is valuable, and social media and other forms of community application have been 

repeatedly shown to be able to provide it. For Georgia, and for Atlanta in particular, there is a need 

for improving the identification of specific risks during ice/snow events and for flooding events. 

These are both events with widespread impact with geographic pockets of extreme severity and 
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risk, and thus two of the most suitable applications for the widespread network of “human sensors” 

that can be tapped through social media. Currently, non-traditional forms of information and 

communication that afford social and community awareness are lacking from the GDOT operation 

and response decision making structure.  

As emerging digital forms of citizen communication with response organizations and between 

citizens is becoming more widespread, augmenting social media for community awareness 

capabilities with existing GDOT crisis identification and response management systems is critical. 

The focus of this research project, thus, is to address the shortcomings that exist in our ability to 

more rapidly, and effectively, communicate and respond to crisis events through investigating the 

need for, the current state of practice of, and the design and development of a community 

augmented approach to identify and respond to events occurring on the Georgia highway system. 

Through comprehensive communications and collaboration with the GDOT Technical 

Implementation Team over the course of the preliminary GDOT Research Project (RP 18-34) 

Social Media-Informed Urban Crisis Detection by the Principal Investigators (PIs), potential utility 

of social media data was identified as an untapped resource to identify, track, evaluate and 

visualize geographically constrained crises within two large emergency event types (Ice in Winter 

and Flooding in Spring) in the state of Georgia. 

1.3 Social Media-Informed Urban Crisis Detection (RP 18-34) 

To address the critical need for enhanced crisis identification and response management, a 

preliminary research project (RP 18-34) was conducted by the research team. The primary focus 

of this project was to explore the potential utility of social media data as an information source for 

GDOT during extreme events. Through a systematic approach, the research team developed and 

executed two case studies—one centered on a winter storm event and the other on an episode of 
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severe flooding. Within the framework of each case study, the primary objectives were to identify 

pertinent information within social media data, assess its relevance using Natural Language 

Processing (NLP) techniques, and assess the potential for a tracking and visualization method for 

GDOT. The chosen case studies included the winter storm that impacted north Georgia on January 

16th and 17th, 2018, and the flooding across the state of Georgia resulting from the impact of 

Tropical Storm Irma from September 10th to the 17th, 2017. 

Drawing insights from these case studies, our research team developed a method to filter 

geolocated Tweets from the extensive volume generated daily in Georgia. Collaborative efforts 

between the GDOT Technical Implementation Team and our researchers led to the identification 

of concerns and the establishment of effective filtration methods. Recognizing the limitations of 

keyword filtration alone, we incorporated sets of stop words and semantic analyses, emphasizing 

the importance of keyword pairs specific to GDOT concerns. In addition, our evaluation of the 

Twitter/X data and feedback from GDOT personnel highlighted the potential value in geolocated 

images associated with Tweets, offering specific information on the magnitude and exact location 

of events. As a result, we concluded that incorporating Twitter/X images into alerts could 

potentially enhance the value of the system. 

Following the assessment of topic detection, sentiment analysis emerged as a valuable method to 

rank the value and criticality of posted data. We observed the utility of sentiment analysis, 

particularly within major metropolitan areas, and its effectiveness in identifying relevant Tweets. 

In the design phase, recognizing the need for a supplementary system for GDOT, our research 

team concluded that Twitter/X data could best complement incoming community application data 

used by GDOT. The primary focus was on reducing the time for community data to generate alerts 

viewed by GDOT employees. We proposed the inclusion of the Twitter/X data stream with the 



 

8  

existing Waze data stream into the ATMS, maximizing added value while minimizing additional 

training and software requirements. Conversations with the GDOT Social Media Coordinators 

further informed our conclusions, emphasizing the importance of GDOT personnel reviewing 

social media data alerts before inputting them as incidents. Building on these insights, we 

developed a framework for converting Twitter/X data into the Waze data format. In conclusion, 

based on the outcomes and components of our preliminary research project, and in consultation 

with both the GDOT social media team and the technical team, we generated recommendations 

for further research on a social media augmented framework and system design.  

1.4 Summary 

In this Community Augmented Rapid-response to Events (CARE) Integrated Crisis 

Communication System project, we performed a more comprehensive exploration by first 

conducting interviews to gain insights into the utilization of social media by various Department 

of Transportation (DOT) entities across the nation. Social media emerged as the primary avenue 

for information dissemination among these DOTs, yet their involvement was predominantly 

confined to established platforms like Waze. This limited engagement stemmed from concerns 

surrounding the reliability of information circulating on alternative social media channels. The 

insights gained from these interviews reinforced the project's imperative, revealing an unmet 

demand for a system that not only provides trustworthy information through social media but also 

reliably filters out the inherent noise associated with social media data. 

To systematically address this need, we developed a competency matrix outlining the essential 

functions required for the envisioned system. As part of our exploration, we evaluated various 

commercially available software packages, even those not currently in use by DOTs. This 

comparative analysis aimed to discern the features and capabilities offered by different solutions, 
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enriching our understanding and contributing to the formulation of our proposed system design. A 

significant aspect of our work involved exploring the design of proprietary algorithms and the 

design and testing of a community augmented rapid-response to events crisis communication 

system for the Georgia Department of Transportation (GDOT). Our focus centered on the seamless 

integration of Twitter/X and Waze data sources, aligning with the project's core objective of 

harnessing the wealth of information generated by citizens across digital platforms to augment 

rapid response to events. 

In the concluding section of this report, we present our recommendations derived from the 

culmination of our extensive research efforts. Furthermore, we outline suggested next steps, 

building upon the foundations laid in this project. These collective efforts aim to establish a 

framework for the seamless incorporation and automated assessment of the growing data generated 

by citizens through various digital platforms, notably social media. Our vision is to enhance crisis 

communication capabilities and empower timely, informed responses to events, leveraging the 

vast potential embedded in the digital landscape. 
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2 SOCIAL MEDIA STRATEGIES AND INSIGHTS 

2.1 Literature Review 

Regular natural and man-made crisis events such as hurricanes, tornadoes, severe storms, floods, 

infrastructure failures (e.g., the 2017 Interstate 85 bridge collapse in Atlanta), and major social 

events (e.g., sporting events), can generate substantial social, environmental, and economic 

damage to communities. These events range from more routine crises such as a faulty traffic signal, 

to storm-related emergencies such as trees down, landslides, potholes, power line failures, and 

road erosion. Having timely crisis identification and response plans in place to address these 

requires situational awareness of an event, access to social data-rich information, effective 

communication, and engagement with local communities. 

Increasing accessibility to mobile services has enabled many social communications to move to 

social media platforms. This formation of virtual communities has become a critical source of 

information and medium for communication for both citizens and organizations in the event of a 

crisis. Social media (e.g., Twitter/X) applications are currently being used for improving 

emergency situational awareness (Yin et al., 2015) for a range of crisis events such as flooding (de 

Albuquerque et al., 2015), winter storms (Wang et al., 2017), hurricanes (Wang and Taylor, 2014), 

earthquakes (Sakaki et al., 2010), and power outages (Jennex, 2012). Many organizations such as 

the American Red Cross and the United Nations Office for the Coordination of Humanitarian 

Affairs (Imran et al., 2014) have adopted these practices. However, there is often a tradeoff 

between information timeliness and information accuracy or relevance. 

The scope, generalizability, and direct relevance of social media analysis to state and federal 

personnel beyond catastrophes is still underdeveloped. The research community has focused on 

determining automated methods of removing the extraneous, irrelevant information and 



 

11  

condensing the relevant information into formats that decision-makers in response organizations 

can effectively use. This includes a range of event detection techniques founded on clustering-

based approaches that use co-occurrences of keywords for semantic examinations (Schubert et al., 

2014 and Zhang et al., 2016), probabilistic topic models/LDA-based (Chaney and Blei, 2012) 

approaches, and Natural Language Processing (NLP)-based methods (Liu, 2011) in detecting and 

characterizing subjective information such as emotions, opinions, and sentiment intensity in 

textual data. 

In the event of crisis, however, it is critical to identify events with respect to associated spatial and 

temporal patterns, relevance and proximity to major infrastructure, geographic dimension, and the 

intensity of negative sentiments. Transportation Research International Documentation (TRID) 

studies related to this research, including the records from Transportation Research Board (TRB) 

and Transportation Research Information Services (TRIS), include several TRB projects. For 

example, “Social Media Guidebook for Emergency Management” (ACRP 04-23, RiP 01642763) 

(Barich 2019) developed a guidebook to help airports leverage social media for emergency 

management and crisis communication. “Utilize Crowd-Sourced Data and Machine Learning 

Technology to Enhance Planning for Transportation Resilience to Flooding” (RP 01674188) 

(Zhang and Pan 2019) extended from this to develop a decision support system (DSS) that 

combines non-traditional, crowdsourced big-data with traditional data to enhance transportation 

readiness for quick response decisions in urban flooding. And “Emergency Management 

Agencies: Pilot for a Crisis Communication Analysis Assessment Test” (RiP 01460030) (Guth 

2019) examined issues such as attitudes toward the use of social media, public information, and 

Emergency Management Agency (EMA) websites in emergency management.  

TRB projects have also been completed in the area of crisis response and social media. “Social 
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Media Practices in Traffic Safety” (DOT HS 812 673) (Sack et al., 2019) explored how State 

Highway Offices (SHOs) may use social media to promote safety through qualitative and 

quantitative scans of social media platforms as well as interviews with nine states.” “Improving 

Emergency Preparedness and Crisis Management Capabilities in Transportation” (RP 01467319) 

(Howitt 2009) explored whether and how one significant functional area―surface 

transportation―developed the capabilities to effectively fulfill US commitments for developing a 

comprehensive, integrated emergency management system. Expanding on the use of social media, 

“Modeling Disaster Operations from an Interdisciplinary Perspective in the New York-New Jersey 

Area” (RP 01566476) (Ozbay et al., 2016) used social media in addition to survey data to 

understand overall demand, destination type choice, and route choice decisions in the aftermath of 

Hurricane Irene. Finally, “Big Data During Crisis: Lessons from Hurricane Irene” (RP 01556674) 

(Sheffi and Goentzel, 2015) characterized the potential of big data from social networks and NLP 

methods in creating actionable information in a crisis in the event of Hurricane Irene. 

These projects have established the initial steps toward integrating social media information and 

communication data into various dimensions of DOTs’ crisis and emergency management 

strategies; however, low integration of social and community data with current DOT crisis 

identification and response communication processes limits the efficiency and inclusiveness of 

responses within and across operations and emergency management teams. Crisis identification 

and response information that can increase reaction time or level of preparedness is valuable and 

social media and community-driven applications data streams have been repeatedly shown to be 

able to provide this capability. Nonetheless, the need for integrating such data into current systems 

for near-real-time crisis communication and response, and, by extension, the lack of a validated 

approach for social and community-driven data fusion in transportation information systems, thus, 
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remains unfulfilled. 

For the design of our own algorithmic model solution, we explored the integration of the social 

media platform, Twitter/X, with the community-driven platform, Waze (i.e., community-driven 

application, as we define it, is a platform that seeks input from users for a particular situation or 

circumstance.). Twitter/X posts (i.e., tweets) can include information such as images and text 

descriptions, replies, retweets, favorites, and geographic information about where the user posted 

in the form of place reference or, occasionally, exact location information. While this can be made 

useful in crisis situations, an observed challenge with this is being able to extract relevant 

information to assess and gain actionable insights. Other typical challenges when dealing with 

social media pertain to trust, privacy, volume of data, availability of geotagged posts, and “rumors” 

or fake news that spread when people misuse social media (Rossi et al., 2018). As mentioned 

previously, many studies have analyzed how social media can be used to better protect people, 

property, and the environment in various phases of emergency management. Community-driven 

applications have been used in studies involving the Waze navigation application to assess its 

validity and coverage (Amin-Naseri et al., 2018), examining real-time traffic flow data from Waze 

in comparison to Twitter/X data congestion (Sidauruk and Ikmah, 2018), and performing incident 

detection that models uncertainty of spatiotemporal aspects in crowdsourced reports (Senarath et 

al., 2020). Waze has been shown to be superior at times to Twitter/X for event detection (Amin-

Naseri et al., 2018). Community-driven applications such as Waze can address select shortcomings 

that most social media platforms currently possess, regarding lacking interactive features where 

users can send reports and update other community members specifically on certain harmful events 

through pre-established categories. Waze also has more precise location data and interactive 

geographical visualizations. Social media, however, adds the community individual voice and 
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sentiment of users that Waze lacks. It has also been revealed that despite platforms to aid disaster 

management using social media data, few are designed for citizen connectedness or use both social 

media and another platform (i.e., different type of input data such as community-driven 

applications) (Chair et al., 2019). In essence, Waze enhances Twitter/X with the higher volume of 

accurate coordinates related to events beyond the bounding box Twitter/X provides with its current 

API, while Twitter/X enhances Waze with adding more context to the categorized alert types (e.g., 

a Waze alert deemed “Accident” when paired with a tweet in the same area could potentially show 

how many cars are involved, if someone was seriously injured or needs help, and possibly images 

related to the event). Thus, the two data streams complement one another.  

Social media data will continue to be used in various fields for analysis and detection within 

communities pertaining to emergency events. This suggests the necessity to improve social media 

data sets through integration with applications that are more equipped for real-time event detection 

(e.g., Waze) because, as mentioned previously, social media lacks certain features community-

driven applications possess. The related research described above presents a gap with social media 

analysis methods related to emergency events that investigate their integration with location-based 

applications that capture incidents relating to emergency preparation and response. Furthermore, 

there is a gap regarding methods that determine an effective augmentation of location-specific 

social media data with community-driven data to address the shortcomings that exist in the ability 

to more rapidly, and effectively, communicate and respond to crisis events. Intervening and 

alleviating disasters as they occur in real-time poses an issue for many emergency responders. 

Therefore, fusing data from social media platforms, such as Twitter/X, and community-driven 

applications, such as Waze, is critical for heightened emergency management capabilities. 
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2.2 US DOT Organizational Insights: In-depth Interviews and Perspectives 

To thoroughly examine the integration of social media within existing DOT systems and gather 

insights from operators, we conducted interviews with six DOTs (District of Columbia DOT, 

Maryland DOT, Massachusetts DOT, North Carolina DOT, Pennsylvania DOT, and South 

Carolina DOT), along with consultations with two affiliated organizations (the University 

Maryland CATT Lab and the University of Florida McTrans Center). In our initial internal 

research team assessment, we identified potential applications, including Data Capable, RITIS, 

Swarco, and Yunex Traffic as candidate solutions for viably augmenting and integrating social 

media with current GDOT systems. We then discovered RITIS is the most widely adopted, and 

composed interview questions. Upon completing our interviews, we directly compared the six 

DOTs and the findings from the two related transportation organizations. Our interviews provided 

insights into how several state DOTs are using transportation software and analysis tools for data 

integration. We found the DOTs employ the platform RITIS to enhance their real-time data 

analysis and traffic management capabilities. While most DOTs express contentment with their 

current tool, some are in the process of evaluating alternatives. Key considerations in these 

evaluations encompass costs, user preferences, data integration capabilities, and privacy-related 

factors. The University of Maryland's CATT Lab was instrumental in the development and support 

of RITIS, and multiple DOTs collaborate to enhance traffic flow and quickly identify crisis events.  

We formulated the interview protocol (provided in Appendix A), making adjustments as necessary 

during the interview based on the real-time responses we received. The results of our interview 

discussions are summarized in Table 1.  
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Table 1. Summary of DOT interviews. 

Primary Functions Used and Benefits Year Adopted Rationale for Implementation Waze Community Data Usage Twitter/X Social Media Usage* 
-Communication with other DOTs 
-Verify Waze alerts with RITIS  
-Understand events without physically 
sending operators 

2017/ 
2018 

-Collaboration with other state DOTs about 
traffic incidents 
-Verification of Waze alerts with RITIS maps 
-Improve sense of awareness 

-To understand live incidents without 
physical investigation 

-None 

-Timeline feature: visualization of 
lane closures, speed ratings, impact of 
traffic, time stamps, etc. 
-ITS Planner: can load data onto 
RITIS for evacuation plans, 
emergency management tools, etc.  
- Accident reports 
- Data archives 

2008 -Partnership with University of Maryland 
CATT Lab to develop: 
-Real-time detection and comparative speed 
analysis 
-Connection between multiple states DOTs 

-To validate RITIS alerts -None 

-Collection of road data without field 
visits 
-Congestion and traffic data 
-Safteygroup: speed tracking 
-Post-incident reporting  
-Gives information across entire state  
-Provides clear information to share 
with senior leadership 

2018 -Collection of road data without field visits -Interested in the use of Waze to 
communicate DOT alerts 

-None 

-PDA- Suite: congestion scans, 
bottleneck ranking, causes of 
congestion graph, trend map: movie of 
traffic, massive data downloader, etc.  
-Automatic calculators  feature with 
Mandatory Federal reporting 

2008 -Included within a package purchased for probe-
speed data 

-To analyze congestion scans -None 

-Consolidates ATMS information 
-PDA-Suite analysis for planning 
-Origin and destination studies 
 

2015 -Real-time data analysis  
-Visualization of routes  

-For the basics found within the connected 
citizens program 

-None 

-Real time data analysis 
-Historic data archives 
-HERE incident data 

2019 -Real-time data -For speed maps and real time data -None 

*Twitter/X Social Media Use was narrowly discussed as ingesting social media postings (as is common practice with Waze alerts). DOTs did describe using 
social media to communicate uni-directionally to the traveling public. Overall, the DOTs described concerns regarding integrating Twitter/X social media into 
their current systems anticipating issues of overburdening operators with false alerts and the potential distraction of large volumes of social media data from 
which it would be difficult to identify relevant information. 
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The DOTs emphasize the ongoing necessity of ATMS systems in conjunction with RITIS to 

efficiently catalog detailed reports. They recommend a dual approach, advocating for the 

continued use of both ATMS and RITIS while advising a cautious approach to directly integrating 

social media within DOT systems. Their concern lies in the need to determine the root problem 

that a DOT aims to address in adding social media data, and they caution against the risk of data 

overload and the creation of additional issues stemming from social media feedback. 

Furthermore, they highlight the value of thoroughly exploring all the capabilities of RITIS when 

making software purchasing decisions. Their advice underscores the importance of evaluating 

existing DOT systems to identify gaps and effectively fill them with RITIS or the desired software 

to be employed. Additionally, one DOT makes a noteworthy observation regarding the user-

friendliness of another system, noting its role in streamlining the flow of information up the 

management chain. Overall, these insights shed light on the nuances and considerations that shape 

the decisions made by DOTs when it comes to adopting and integrating transportation software 

and analysis tools. 

We also met with two university research centers developing related software for DOTs, including 

GDOT. Here we summarize the discussion with CATT Lab, a self-funded nonprofit organization 

from the University Maryland. We include results from that discussion primarily as RITIS was 

identified as being used by most of the DOTs we interviewed and the CATT Lab originally 

designed RITIS 20 years ago to improve the communication of real-time situational awareness 

between Maryland, Virginia, and Washington D.C. RITIS ingests various data, such as crash and 

work zone data, from states to analyze and improve traffic flows. Since its creation, it has expanded 

and offers real time analysis for approximately 13 state DOTs, including the Georgia Department 

of Transportation. RITIS requires a single point integration to implement the platform in a new 
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DOT. Employees of DOTs can learn from RITIS’ training sessions and video archives to 

familiarize themselves with the platform. Once implemented, RITIS can fulfil various actions 

including creating archives—which ATMS systems are not designed to do—overlaying 

information to the state, as well as the capability to write reflections on incidents after their 

occurrence. The team within the CATT Lab frequently updates RITIS, including a daily technical 

refresh to fix bugs and make functional improvements that are heavily guided by users through 

feedback committees and RITIS-hosted Eastern Transportation Coalition meetings that take place 

four times a year. RITIS integrates crowdsourced data from Waze, but not Twitter; the CATT Lab 

described being not interested in integrating Twitter/X because of its lack of reliability and 

difficulty of identifying relevant information among a large volume of communications, similar to 

sentiments shared in interviews with state DOTs. Although RITIS ingests every input reported in 

Waze and can filter real-time content by geography and reliability, 511 and 911 reporting are the 

preferred choice of data. An interviewed representative of the CATT Lab noted that the ATMS 

system is the primary system used in urban settings because of its precision and shorter delay 

compared to crowdsourced data; whereas crowdsourced data is more beneficial to fill in the gaps 

in rural settings where it is less likely for a government official to observe and report an incident.  
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3 COMPETENCY MATRIX DESIGN 

3.1 Background 

Having completed the DOT interviews and learned a great deal about how DOTs evaluate and 

implement systems, we developed a competency matrix to assess the diverse capabilities among 

potential software solutions and to inform the design and development of a social media 

augmented crisis communications system with features that extend beyond the current state of the 

art. Developing the competency matrix for crisis informatics and emergency response requires an 

understanding of the methodology and theories involved and an assessment of the information 

technology applications used by various stakeholders of an organization. It is crucial to consider 

the most advanced technological solutions and their feasibility and potential for success. The 

Institute for Defense Analysis developed a study where seven principal categories were 

fundamental for a prompt software acquisition process and sustainment.  

Although software development and deployment time are important factors in the success of IT 

(Information Technology) projects in the public sector and there are several factors (Table 2) to be 

considered to accelerate the process it is important to note the early warning signs of IT project 

failures (Garrison, Tate, & Bailey, 2019). Early warning signs would be defined as risk indications 

of a project’s future problems and potential failure. Kappelman et al. (2006), conducted a study 

seeking to determine from the participation of 138 experienced IT managers the early warning 

signs of IT projects. The results indicate two principal causality groups: People related early 

warning signs and Process related early warning signs (Table 3). Considering and evaluating these 

dominant warning signs during the initial 20 percent of an IT project would permit the 

identification of indices that would contribute to long-term project failure. Nonetheless, it is vital 

to also understand the importance and role of public procurement for IT solutions.  
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Table 2. Speed limiting factors in software acquisition (Garrison, Tate, & Bailey, 2019) 

Factors Description Considerations 

Required 
Functionality 

Defined scope 
of the software 
program. 

• Assess the negative requirements of a system. 
• Achieve Minimum Viable Product (MVP) to gather 

feedback and refine issues. 
• Review the modularity of systems for parallelization of 

development efforts. 

Architecture 

Program 
organization 
and operating 
environment. 

• Develop system to support agile improvements. 
• Consider the lifespan of the system and the need for 

upgrades in the future. 
• Contemplate the interoperability needs and capabilities. 
• Determine the degree of inclusion of current avant-garde 

technologies. 
• Evaluate the need for the rapid implementation of new 

capabilities or a rapidly upgradeable system. 

Technology 
Maturity 

The maturity 
level of 
innovative 
solutions 
implementation. 

• Assess the level of maturity of software and hardware 
design processes. 

• The Department of Defense evaluates AI as immature 
technology given that there are issues such as the 
validation and maintenance of datasets or the 
achievement of testable requirements.  

Resources 

Ecosystem 
required for a 
successful 
implementation. 

• Determine the experience of the implementation team. 
• Evaluate access to datasets and specialized IT 

infrastructure for system development and deployment. 
• Consider the level of funding stability for a program. 

Testing 
Strategy 

Defect detection 
and interactions 
throughout the 
development. 

• Debugging, finding, and fixing defects within the system 
in a periodical and rigorous manner. 

• Implement the testing strategy as early as possible in the 
process. 

• Ensure correct testing methods are completed and results 
are adequately conveyed to the development process. 

Contract 
Structure 

Alignment of 
contractor and 
outsourcing 
organization. 

• Consider the need for maintenance and future upgrades 
of software-intensive systems. 

• Existing law forbids making a condition of contract 
award from IP rights. 

Change 
Management 

Transformation 
of processes for 
adaptation. 

• Align stakeholders controlling system requirements and 
developing/fielding the systems. 

• Establish the definition of system need, and place 
requirement thresholds.  
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Table 3. Warning Signs of IT Project Failure (Kappelman, McKeeman, & Zhang, 2006). 

People Related Early Warning Signs  Process Related Early Warning Signs 

• Absence of top management 
support. 

• Inefficient project manager. 
• Lack of stakeholder participation 

and involvement. 
• Fragile project team commitment. 
• Inexperience or knowledge gap 

from the team. 
• Experts are unavailable from 

extensive responsibilities and 
workload. 

 

• Absence of scope requirements and 
success criteria. 

• Lack of change control process. 
• Weak management and scheduling. 
• Communication breakdown with 

stakeholders. 
• Limitation of resources and resources 

reassignment. 
• Shortfall of project business case. 

 

Procurement of IT solutions. IT procurement is the acquisition of hardware systems, software 

programs, and upgrades along with other services through a series of steps that include a proposal, 

bidding, contract awarding, and contract management. The extensive process needs to be 

structured and organized to ensure program success. Therefore, several procurement maturity 

models have been developed to support the efficacy and capability of managing procurement 

challenges. Hua (Hua, 2022) proposed a procurement maturity model expanding from current 

models in the theory and subsequently applied four different maturity stages while taking into 

account political and managerial objectives. Hua determined that for organizations looking to 

improve procurement maturity, firstly organizations have to conduct a strategic assessment of how 

the procurement process integrates with the organization’s leadership. Secondly, organizations 

should achieve increased awareness from the procurement team members on software 

development methods. Finally, the procurement team needs to comprehend the vendor and handle 

business negotiations during the process (Hua, 2022). 

Academic and industry reports show that around 46 percent of software projects are challenged 
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which signifies that although they are operational, they have problems with their budget, schedule, 

or even capabilities requirements (Johnson, 2018). Nguyen et al, (Nguyen, et al., 2022) conducted 

a study to determine the criteria for software acquisition, understand the timeline during 

procurement, and the variations in the requirements of Request for Proposal (RFP) from multiple 

software categories. Although the evaluation weights assigned for software RFP vary from 

software category and the type of organization, a common evaluation criterion was determined by 

Nguyen et al. (Table 4). 

Table 4. Evaluation criteria weighs for different software categories (Nguyen et al., 2022). 

 

For incident management systems the most relevant category would be the Asset column in Table 

4. On average a larger weight percentage is given for the implementation approach (28%) which 

consists of assessing the system deployment methods proposed by the vendor and the 

customization capabilities regarding different scenarios. Secondly, with 21 percent, the system 

capability is evaluated, and the procurement team rates the capacity of the vendor to meet the 

Enterprise Resource 
Planning

Financial Systems
Asset Management 

Systems
Common Business 

Application
Specialized Business 

Application

Cost proposal 20 23 20 16 24

Response to RFP 
requirements

2 9 3 4 4

Implementation 
approach

22 23 28 29 26

Company 
qualifications

15 21 20 21 19

Project team 
qualifications

3 6 5 6 3

System capability 27 17 21 22 19

Software 
demonstration 

9 0 2 0 2

Other criteria 2 1 1 3 2

Evaluation criteria
Average Weight (%)
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functional, technical, and security requirements of the project while also understanding the 

potential integration of future modules within the system. 

Thirdly, with 20 percent, is the cost proposal which refers to the overall financial burden including 

the installation, training, licensing, and maintenance of the software system. Equally important 

during RFP evaluation, with 20 percent, company qualifications reflect the experience and 

expertise of a vendor to handle the project. Lower importance is given to the project team 

qualifications, the response to the requirements of the Request for Proposal, and other criteria such 

as the business structure of the vendor or the past experiences between the two sides. Other 

significant findings from Nguyen et al., show that on average the implementation duration noted 

on the RFP is 265 days which corresponds to almost 70 percent of the time allocated in a project 

on the RFP (Nguyen et al., 2022). 

Technology Choice in Procurement. Although technological choice and procurement is a formal 

process, the acquisition is not simply the result of a rational decision but the tension between 

sociocultural factors. A study by Pollock and Williams (Pollock & Williams, 2007) explores the 

sociology behind the procurement of software technologies by observing a joint venture between 

a city council and an IT company along with management and computer science experts. During 

the yearlong selection, the research team observed the procurement process and conducted 

interviews which allowed them to determine the following findings. The decision environment 

was described as having high uncertainty levels where the features of the vendors were negotiable 

within the procurement team, making the comparative measures flexible. The authors claim that 

the property of each system is not relevant in the comparison of similarities and differences but 

instead it is the validation of evaluating criteria that provided meaning to these properties. The 

scaffolding metaphor and the disentangling, framing, and overflowing framework converge 
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towards a decision not only dominated by a formal process but as a sociological attempt to reach 

a common decision. 

3.2 Methodology  

With the consideration of the success and failure factors in IT solutions, the current practices in 

public software procurement for IT solutions and the implications of a formal process and a 

cultural sociological approach driving a decision, we designed a competency matrix to evaluate 

the range of capabilities and alignment of potential IT solutions for crisis informatics leveraging 

social media (Table 5). The vertical axis of the matrix addresses 9 dominant factors that were 

determined to be important from the technical and procurement perspectives (Garrison, Tate, & 

Bailey, 2019; Nguyen, et al., 2022), “Social Media-Informed Urban Crisis Detection” (No. 

FHWA-GA-20-1834) (Samuels, Mohammadi, & Taylor 2020), (Abel, Claudia, Houben, Tao, & 

Stronkman, 2012; Endsley, Bolte, & Jones, 2003; Jodoin & Austrich, 2020; Jin, Pang, & & 

Cameron, 2007; Kappelman, McKeeman, & Zhang, 2006; Thales, 2022). The horizontal axis of 

the matrix addresses the level of proficiency around each item where the scale includes 5, 4, 3, 2, 

and 1. Each cell in the matrix has been given a baseline that was determined from the current trends 

in technology, transportation authorities’ requirements need, and considerations during the 

acquisition of a solution. Each solution is then evaluated with the designed competency matrix 

following the baseline of each factor. 

Factors. The Architecture of a software system addresses the fundamental structure and behaviors 

of a system. Software Architecture is the basis for qualities such as modifiability and security. In 

the procurement process, it is essential to verify the feasibility and applicability of a potential 

solution. Garrison et al. (2019) explain that an efficient Architecture will determine the cost and 

maintenance effort of a system in the future. According to Nguyen et al. (2022), the weight given 
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during RFP to the implementation approach is 28%, and system capability is 21% which indicates 

system architecture is given significant importance by the procurement team. In the context of 

crisis informatics for transportation authorities: “5” system Architecture would show high 

modularity to integrate with the existing system while being designed for long-term operations 

within the organization. “4” Architectures includes the integration of modular components within 

existing transportation authority’s systems but lack the extended design mindset that factors 

system longevity from an absence of agile and lean methods in their improvement requirements. 

“3” Architectures include modular components towards a solution but are not designed towards 

integration with the existing system. These can be systems that parallelly support existing systems 

but have the potential to be integrated in the future from their modular nature. “2” Architectures 

are systems without modular components and interoperability concerns that could be integrated 

from their technical design despite not being modular. “1” Architectures do not consider 

modularity or address interoperability in their system design.  

The Automation of a system covers the level of independent applications that reduce the need for 

human input to operate. Previous research showed the importance of automatic event detection for 

the reduction of response time and enhanced emergency response for road-related incidents 

“Social Media-Informed Urban Crisis Detection” (No. FHWA-GA-20-1834) (Samuels, 

Mohammadi, & Taylor 2020). In the context of crisis informatics for transportation authorities, it 

addresses the need for automatic event detection of road-related events and emergencies. “5” 

Automation is a reliable completely autonomous system to detect events without human 

intervention in the determination process. “4” Automation is achieved from autonomous systems 

that detect automatically detect events but require human intervention for validation. “3”  

Automation in event detection is achieved from advanced automation in event detection that 



 

26  

corresponds to the integration of automated reporting methods not limited to social media such as 

phone calls. “2” Automation is achieved from the automatic integration of externally determined 

events with the transportation authority operating system. “1” Automation is attributed to 

solutions that do not consider automation in event detection.  

Event Detection of a system encompasses the range of events a system can detect and the range of 

information received and transmitted to be considered during an emergency response. In the 

context of Transportation Authorities, the main requirement is to model the road network yet 

additional contextualization of events can provide additional information to support emergency 

response (Abel et al., 2012) from the use of metadata. “5”  Event Detection identifies various types 

of emergencies not limited to the state road network but aggregated among a variety of public 

networks, for example, utilities. “4” score event detection is reached from the identification of a 

different type of event affecting the road network. “3” Event Detection is reached from the 

identification of various types of road-related events across the road network but not limited to 

vehicle incidence, for instance, flooding or ice on the road. “2” Event Detection is reached from 

the detection of vehicle-related events including predetermined road conditions such as planned 

road closures from construction. Finally, “1” Event Detection is given to single event detection 

across the road network such as vehicle crashes or traffic.  

Situational awareness of a system is defined by Endsley, Bolte, and Jones (2003) as being sensitive 

and informed about the events happening around and understanding the meaning of the 

information now and in the future. Three levels are given for the obtention situational awareness: 

perception of elements in the environment, comprehension of the current situation, and projection 

of future events. In the context of Transportation Authorities situational awareness is achieved 

when more information is shared and complemented with the operator’s training. “5” is given for 
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systems that deploy FHWA views for NextGen TIM (Jodoin & Austrich, 2020). “4” is achieved 

by leveraging live video communication with individuals on-site to guide and support the 

emergency response. “3” is reached by the augmentation of situational awareness through live 

visual media from existing static or dynamic cameras. “2” is achieved from the inclusion of social 

media-filtered data streams to obtain metadata such as videos and cameras. The strength of social 

media relies on the derivation of emotions that can shape the strategic response of an organization 

(Jin, Pang, & Cameron, 2007). “1” is given from situational awareness only provided by current 

511 phone reports.  

Detection Speed covers the time between the time an event occurs to the time it is informed to the 

emergency operator. Getting the information as fast as possible is important to rapidly create 

situational awareness and support emergency decision-making response (Kwan & Lee, 2005). In 

the context of Transportation Authorities, the detection of events is critical on the road network 

across large networks. “5” is achieved by ideal systems that achieve detection in real-time or 

between 0 and 1 minute of the event happening. “4” is achieved by a system that has perfected 

near-real-time reporting of events or in a timeframe between 1 to 3 minutes. As the time for event 

detection increases the score achieved is lower such that a “3” is scored between 3 to 10 minutes, 

a “2” is scored between 10 to 20 minutes and a “1” is scored for more than 20 minutes. The 

detection speed is fundamental in crisis informatics and specifically social media has demonstrated 

to be a tool capable of leveraging near real-time detection of events. 

System Maintenance is a requirement that considers the contract method by which a vendor or 

solution provider will design the system in the long term and its commitment to ensuring the 

appropriate level of operation of the system requirements. Given the speed at which technology is 

updating and how new challenges arise software usually undergoes corrective, preventive, 
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perfective, and adaptive maintenance (Thales, 2022) but given constraints such as intellectual 

property (Garrison, Tate, & Bailey, 2019) affect the proposed contract regarding maintenance. 

Therefore, in the context of transportation authorities, it consists of the maintenance of ATIS 

systems. “5” score is received for a system that is operated by the user, in this case, the respective 

Transportation Authority. A self-dependent DOT is able to maintain and update its modules, 

saving costs and customizing the solution to their needs. “4” is achieved from regular maintenance 

of the system by a contractor, this includes current updates and system tests and checks that would 

detect any malfunction or failure. A score of “3” is achieved for maintenance as needed, the 

downsides of this aspect include the potential crashes and system integration problems which 

would compromise the effectiveness of the system, “2” is reached if maintenance is not provided 

as part of the solution provided. And a “1” is given for planned obsolescence where the system 

cannot be maintained and eventually becomes obsolete and needs replacement.  

Deployment speed is one of the main concerns studied in the procurement of software solutions. 

Nguyen et al. (2022), determined the expected duration of the project durations in the RFP. On 

average the total time of implementation was 382 days while some projects were faster at 43 days 

others took up to 1384 days. In the context of Transportation Authorities, the faster they can deploy 

technology and put into effect crisis informatics systems the more impact they will have on the 

public. According to the SCCT crisis communication theory developed by Coombs (Coombs, 

2007), the protection of assets is induced by the reputational threat to an organization posed by an 

event, motivating transportation authorities to be prepared for crisis scenarios. A “5” is achieved 

by an ideal system that has the capabilities of immediate implementation. A “4” is given for a 

faster-than-average deployment of 6 months while a “3” score is achieved for an average 

deployment rate. A “2” is reached for a slightly slower-than-average deployment while a “1” is a 
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system that can be deployed in more than 2 years. 

Contractual Needs are the basis of public procurement and different setups with the potential 

solutions providers will have repercussions in the short and long term. Procurement contracts 

scope the product selection the payment conditions among others. In the context of a transportation 

authority, a ranking is based on what would be more beneficial. A “5” score is achieved from an 

internally developed solution; this would avoid interaction with vendors and avoid risk from 

outside vendors. “4” is achieved by awarding a renewable contract, in the software development 

industry time-and-materials contracts are usually awarded from the uncertainty in the solutions. 

“3” is reached with a contract that includes the development and maintenance of the system on a 

fixed price contract that defines roles and responsibilities yet is more complicated to renew the 

contract on similar terms after the solution development. “2” is achieved for contracts that only 

cover the development scope of the project and do not include future interaction with the deployed 

system. On the Transportation Authority, a “1” is given for long-term concessions of a system and 

the complete dependence on a company to operate their crisis informatics solution.  

Experience is determined by the impact on the field and the setup of an adequate team to design a 

solution.  The relevance of experience has been linked by Kappelman et al. (2006), as a people-

related warning sign to IT project failure. Along with this, experience factors the team 

commitment, knowledge, and quality of managers involved. In the context of Transportation 

Authorities, a team must be chosen to effectively implement crisis detection systems. For 

experience, scores are determined based on the National Institute of Health proficiency scale (US 

National Institute of Health, 2022) that examines teams based on involvement with past projects, 

impact in the sector, and market position as: expert, proficient, competent, average, and novice.  

Competency Matrix Application. The competency matrix (Table 5) can be applied by 
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transportation authorities to evaluate the factors determining the competency to implement crisis 

informatics solutions. The basics to determine a score are derived from knowledge on the corporate 

standing of vendors and technology maturity and refinement.  Pollock and Williams (2007) 

determined that although procurement is a formal process it is also a decision process that engages 

the procurement team through a malleable process or negotiation. From this, the matrix has been 

designed such that the procurement team for crisis informatics solutions can be tasked with 

attributing a weight to the factors. The composition of the procurement team has to be diverse and 

group representatives across the divisions of a transportation authority. Pollock and Williams 

(2007) in their case study encountered the procurement team to be integrated with the primary end 

users of the system, IT personnel, project managers, a chairperson, and other parts of the 

organization. Although not part of the procurement team, academic professionals were present 

during the meetings and throughout the process. Conceptually, different members of the 

procurement team could weigh the different factors of the competency matrix based on their 

experiences, needs, and acceptable tradeoffs. The next section applies the competency matrix 

design to evaluate a set of different crisis informatics solutions.  
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Table 5. Competency Matrix for Evaluating Crisis Informatics Solutions by Transportation Authorities. 
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3.3 Assessment 

A total of 12 software applications/platforms with social/community data features, including 

RITIS, were compiled to assess potential vendors based on the information available online and 

on their website and available information about their previous work with DOT or related 

organizations. Each vendor was scored using the competency matrix designed to assess their 

abilities in crisis informatics and emergency response. The scores were determined based on online 

information about the vendors' technological capabilities, expertise, and experience. After each 

vendor was scored, a weighted average was used to compare overall competency. This approach 

allowed for an objective assessment of the vendors' strengths and weaknesses and is designed to 

help GDOT as a competency matrix for future software vendor evaluation. The competency matrix 

is designed to allow GDOT to adjust the weight of each factor to determine the overall weighted 

score. Table 6 shows the scoring results with equal weighting.  

 
Table 6. Competency Matrix Scoring with Equal Factor Weighting. 

 
 

A vendor checklist was supplied by GDOT which included instructions of how to further evaluate 

these vendors. The interviews with the DOTs about the vendors they are using provided valuable 

insights into the performance and capabilities of different vendors in the transportation industry. 

This information aided in the evaluation of potential vendors for GDOT, including RITIS, and 
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providing recommendations. Gathering information from a trusted source can make the evaluation 

process more objective and comprehensive, leading to a more successful vendor selection. The 

competency matrix can be an effective tool for GDOT to evaluate purchases from future software 

vendors, and even the list of vendors noted in the matrix (although GDOT is already using RITIS). 

In neither our exploration of software in use at DOTs in interviews with 6 different state DOTs 

nor in the range of features provided by the software vendors analyzed in the competency matrix 

did we identify a solution that is being implemented by DOTs that ingests Twitter/X social media 

data. A gap remains in the inclusion of this functionality to aid in identification of crisis events on 

the highway system. The lack of such a functionality may be due to the expressed concern by 

DOTs over identifying the relevant information among a large volume of data, which might 

overburden transportation management center operators and result in false alerts. However, recent 

developments in artificial intelligence creates the possibility to pair Twitter/X social media 

postings with Waze community posts in an automated manner that would improve upon the 

reliability of crisis events identified. The following chapters explore this potential and develop and 

test algorithms to enable this functionality.  
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4 ASSESSING COMMUNITY NEEDS IN DISASTERS 

 
Enhancements to emergency management systems are imperative to improve response execution 

and better serve society. The recording-breaking 2004 and 2005 hurricane seasons (e.g., 

Hurricanes Ivan, Katrina, Rita, etc.) exposed shortcomings in emergency management, especially 

in federal response capabilities (Schmidtlein et al. 2008). When a natural disaster event is deemed 

so severe that it exceeds the ability of both state and local governments to respond, the Federal 

Emergency Management Agency (FEMA) issues it as a major disaster declaration, however, there 

is no set definition of what “beyond the combined capabilities of state and local governments to 

respond” means in order to receive assistance (FEMA 2023c). Thus, subjective judgments have 

the potential to shape the outcome of declarations and resource allocation. In the majority of cases, 

before requesting a disaster declaration to receive aid, state and local officials must conduct a 

damage assessment. With this, emergency management responders can face challenges in 

providing immediate intervention and relief for ongoing disasters as they await the assessment and 

declaration of a crisis event. Many areas are underserved by this process, resulting in inequities 

with distribution of aid (Schmidtlein et al. 2008). Before necessary federal assistance is given, 

state and local emergency management personnel need to make decisions on potential resources 

needed to mitigate the effects of disasters, especially when there is little time to decide or wait for 

a drawn-out damage assessment. There needs to be alternative systems in place that can adequately 

and quickly assess community needs when hazardous events occur that can pose a significant 

threat to communities and hinder relief endeavors. There is also a need for emergency management 

personnel to have more effective communication with citizens during a disaster through a tool or 

interface such as social media (Lovari and Bowen 2019). This is where both social media and 

community-driven applications can further assist with identifying major disasters as they occur, 
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and potentially speeding up the process of receiving assistance through enhanced context of 

community needs.  

Utilizing social media for natural disaster assessment continues to trend in research studies since 

social media platforms, such as Twitter/X, first emerged in 2006 and gained increased popularity 

(Wu and Cui 2018). Twitter/X is one of the world’s largest social media platforms, having over 

368 million active users as of December 2022 (Tankovska 2022). Social media can be used for a 

multitude of activities and initiatives. As it pertains to disaster risk reduction, social media can be 

used in crisis response to serve as a listening function, to track events, for emergency planning and 

management, to foster connectedness and volunteering, to promote causes to raise donations or 

funds for those affected by disasters, and for academic research (Alexander 2014). Social media 

users can express their worry, relief, and other sentiments on such platforms during a disaster, or 

interact with various community members and stakeholders to share information. It is common 

during natural disaster events that affected citizens turn to social media for relevant updates, along 

with seeking help from other individuals or professional organizations during all phases of the 

disaster cycle (Roy et al. 2020), as social media is faster than traditional news outlets for the 

dissemination of information (Wu and Cui 2018). Social media platforms have the ability to extract 

pertinent information through crowdsourcing; benefiting emergency management agencies’ 

protocols and practices when this knowledge is analyzed and modeled for detection, prediction, 

and other aspects of emergency management. Social media can be integrated into the emergency 

management process, particularly when it comes to decision making and assessing damages for 

major disaster declarations. 

Platforms such as Twitter/X are social applications whereas a community-driven application, as 

we define it, is a platform that seeks input from users for a particular situation or circumstance. 
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Both types of platforms engage members of society, but social applications allow more creativity 

with content to build a unique network while community-driven applications result in more of a 

targeted network to share information. Waze, a popular community-driven navigation application, 

is used by over 151 million monthly active users across the globe as of December 2022 (Smith 

2023) and employed in operations by U.S. State DOTs, collecting hundreds of thousands of high 

frequency data pertaining to traffic and incident events a day for a given state. Some U.S. State 

DOTs are using Waze data to enhance current communication systems already in place (The 

Eastern Transportation Coalition 2017). However, there is a need for augmented systems to be 

developed and deployed, as currently Waze data is typically input either in parallel with other 

systems or by itself into DOT feeds. The lack of integration of Waze and other communication 

systems, reveals a gap where Waze data can be merged with an outside source, such as social 

media data which is already popularly used in disaster research, to increase situational awareness 

and aid decision making. Community-driven applications such as Waze can address select 

shortcomings that most social media platforms currently possess, regarding lacking interactive 

features where users can send reports and update other community members specifically on certain 

harmful events through pre-established categories. Waze also has more precise location data and 

interactive geographical visualizations.  

Social media, however, adds the community individual voice and sentiment of users that Waze 

lacks. It has also been revealed that despite platforms to aid disaster management using social 

media data, few are designed for citizen connectedness or use both social media and another 

platform (i.e., different type of input data such as community-driven applications) (Chair et al. 

2019). In essence, Waze enhances Twitter/X with the higher volume of accurate coordinates 

related to events beyond the bounding box Twitter/X provides with its current API, while 
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Twitter/X enhances Waze with adding more context to the categorized alert types (e.g., a Waze 

alert deemed “Accident” when paired with a tweet in the same area could potentially show how 

many cars are involved, if someone was seriously injured or needs help, and possibly images 

related to the event). Thus, the two data streams complement one another. When information 

provided by active users on public platforms during crises are tagged with geolocation, it aids 

emergency responders in determining where people are located, evaluating community needs, and 

providing alerts and warnings to both citizens and first responders in regard to changing 

environments (Lindsay 2011). Georeferenced posts can strengthen situational awareness and aid 

in the four phases of emergency management (mitigation, preparedness, response, and recovery) 

by allowing agency officials to gauge and track community reactions and opinions in real-time 

related to a disaster. 

As social media continues to play a significant role in disaster studies, it becomes crucial to 

develop approaches that effectively serve the population of people that can access and utilize social 

media during crisis events. It also becomes critical that when building computational models 

designed to be implemented into society, that machine learning bias is mitigated. While the effects 

of existing data analytics approaches and the fairness these techniques have on vulnerable and 

underserved populations during disasters remains relatively understudied (Yang et al. 2020), 

approaches such as qualitative measures to mindfully construct a machine learning model exist 

(Monroe-White and Lecy 2022). Constructing models with these demographics in mind is critical 

to integrate into any study. Following scholastic-based bias mitigating protocols can begin to 

bridge the knowledge gap of equitable measures in disaster informatics, advancing our 

understanding in this domain. To achieve augmented emergency management capacities with 

platforms such as Twitter/X and Waze, it is pertinent to understand past research that has been 
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conducted on the use of historical data to enhance data sets, social media as a social sensor, the 

fusion of different data sets for natural hazards and disasters, and mitigating machine learning 

biases.  

4.1 Use of Historical Data 

Historical data can be used to provide additional content or background knowledge on a particular 

problem, or generate more robust models when trained on a previous event for tasks such as 

simulations of current or future events. The machine learning concept of Transfer Learning makes 

the use of past data easily capable of being integrated into prediction models, typically in situations 

where data is scarce or limited, as it is the ability of a system to provide the knowledge of the 

domain it is trained on (i.e., the source) to another domain (i.e., the target) (Neyshabur et al. 2020). 

The use of a pre-trained model on historical data for Transfer Learning is seen across various 

infrastructure research areas such as in the energy sector for models that have limited energy 

related data (e.g., wind power production) (Hooshmand and Sharma 2019) and to infer energy 

consumption and demand for buildings (Peirelinck et al. 2022; Ribeiro et al. 2018). Other 

infrastructure areas this approach is used in is smart city applications such as activity recognition 

and building dynamics (Pinto et al. 2022) and transportation for GPS record estimation on speeding 

(Yu 2019).  

As it pertains to emergency events, Halse et al. (2019) generated a simulator system that emulates 

real time tweets from previous tweets based on their temporality with a crisis event. This was 

designed to replace collecting tweets directly from Twitter/X. The authors showed that use of 

historical tweets can be used for predicting current events and noted a recommendation that custom 

filtering should be used for training purposes (Halse et al. 2019). Other studies have made use of 

historical data for natural disasters through scenarios such as remote sensing for flooding (Pollard 
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et al. 2018; Qi et al. 2009), predicting earthquakes (Yuen et al. 2005), and emergency management 

for validation of emergency vehicle travel times (Henchey et al 2014) and decision making 

(Romanowski et al. 2015).  

4.2 Twitter/X as a Social Sensor 

Infrastructure (e.g., bridges, power systems, etc.) can have physical sensors to monitor or detect 

damage but social sensors (e.g., Twitter/X) have been shown to detect events where physical 

sensors are lacking, such as providing detailed information about the failure (Tien et al. 2016). 

Twitter/X posts (i.e., tweets) can include information such as images and text descriptions, replies, 

retweets, favorites, and geographical metadata about where the user posted. Currently, about 1-2% 

of tweets are geo-tagged, and location information can either be a precise location or a Twitter/X 

“place” (e.g., bounding box) (Twitter/X Developer Platform 2023). While this can be made useful 

in crisis situations, it is challenging to extract relevant information to assess and gain actionable 

insights with precise coordinates. Other typical challenges when dealing with social media pertain 

to trust, privacy, volume of data, availability of geotagged posts, and “rumors” or fake news that 

spread when people misuse social media (Rossi et al. 2018).  

Social media platforms, like Twitter/X, have been used in a wide range of ways in the field of civil 

engineering. Social media analysis has been used to improve traffic conditions (Athuraliya et al. 

2015; Sujon and Dai 2021), detect emergency events via Natural Language Processing (NLP) 

(Verma et al. 2011; Wang and Taylor 2019), develop communication networks in the construction 

industry (Boddy et al. 2010; Du et al. 2020), and determine disaster-related impact assessments on 

the built environment (Hao and Wang 2021; Yuan and Liu 2020). Also, social media has been 

used to study human mobility by identifying city-scale patterns (Wang and Taylor 2016), user 

polarity of sentiments (Wang and Taylor 2018), and urban-level spatiotemporal energy demand 
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prediction (Mohammadi and Taylor 2017). The use of social media integrated into other systems 

can improve situational awareness through augmenting communications and informing decision 

makers on resources and aid needed in affected areas (Yin et al. 2012).  

Additionally, Twitter/X with community-driven applications have been used in research involving 

the Waze navigation application to examine real-time traffic flow data from Waze in comparison 

to Twitter/X data congestion (Sidauruk and Ikmah 2018). Twitter/X has been shown to be less 

reliable in comparison to other crowdsourced data feeds (Amin-Naseri et al. 2018) in terms of less 

tweets being made at night versus during the day, most being during peak traffic hours, and, while 

covering arterials well, most tweets come from the center of a city (i.e., providing less coverage 

from outside areas) (Gu et al. 2016). Twitter/X data will continue to be used in various fields for 

analysis and detection within communities, however, the number of tweets during a disaster can 

fluctuate depending on the disaster and how engaged community members are on the platform. 

There are also cases where tweets relevant to a disaster are smaller in volume than expected, 

necessitating more data points to be ingested into a model for further community perspective 

(Salley et al. 2022). This requires augmenting social media data sets with applications that are 

more equipped for real-time event detection (e.g., Waze), which social media largely lacks. Social 

media can be used to better protect people, property, and the environment in crisis events, however, 

relies on the interdependencies of different systems to enhance actions taken in the phases of 

emergency management. 

4.3 Fusing Data for Natural Disasters 

Data integration is critical for timely and effective crisis information collection and 

communication, data analysis, and emergency personnel decision making for disasters; however, 

data integration can be a challenging task (Peng et al. 2011). Within the field of disaster 
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informatics, established research has highlighted significant challenges pertaining to data 

integration (Ogie and Verstaevel, 2020). Purohit et al. (2019) have identified three specific 

challenges associated with the integration of open-source data for disaster management. These 

challenges include the heterogeneity of data sources, where the diverse formats of multiple data 

sources can make merging difficult; the inconsistency of data sources, which results from different 

words or semantics used across data sources, making the establishment of an interpretable structure 

challenging; and the incompleteness of data sources, characterized by the scarcity of data or the 

lack of relevant information (Purohit et al. 2019).  

Researchers have initiated efforts to tackle these challenges by devising data fusion methodologies. 

Some approaches aim to merge data from various sources to assess earthquake impacts, 

incorporating damage data from forecasts and remote sensing with field measurements (Loos et 

al. 2020; Loos et al. 2022). Additionally, they have been applied in situations such as the 

assessment of damage caused by Hurricane Matthew, where unmanned aerial vehicles (UAVs) 

and social media data, such as tweets, were integrated (Yuan and Liu 2018). Moreover, these 

fusion techniques have been employed in urban analytics by combining sensor data and social data 

(Psyllidis et al. 2015). With research emphasizing the intricate nature of data integration in disaster 

management, there is a continuous need for thoughtful solutions to address them effectively. 

Research also highlights the importance of approaching data integration responsibly by collecting 

“good data” (e.g., data that has quality content, truthful, etc.), that is unbiased (Nargesian et al. 

2022). While integrating different datasets can help alleviate potential biases, it remains essential 

to mitigate bias through the implementation of some set of standards or well-defined parameters 

to ensure reliable computations (Albahri et al. 2023).  
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4.4 Mitigating Machine Learning Bias 

Studies have shown how race, social class, and/or placement play a role in populations 

experiencing social and environmental injustices related to hazards and disasters (Adeola and 

Picou 2017; Bodenreider et al. 2019; Griego et al. 2020; Hamideh and Rongerude 2018; Nejat et 

al. 2022;Wright 2011). With the growing integration of machine learning into social decision-

making and everyday routines, such as emergency management, there has been a call to control 

and assess fairness in computational efforts to avoid the risk of exacerbating bias. There is no 

consensus or widespread agreed upon definition of “fairness” as it pertains to bias and equity in 

machine learning; how fairness is determined depends on the research question and situation it is 

applied to. This paper defines fairness as the act of addressing bias with the objective of 

diminishing the potential adverse consequences upon societal integration. Research has 

established three ways to quantitatively perform bias mitigation before, during, and after model 

execution: in the training data, while training machine learning models, and on trained machine 

learning models (Hort et al. 2022). Previous research has investigated fairness through approaches 

such as fairness testing algorithms (i.e., inconsistencies between existing and mandated fairness 

requirements of a software), these are typically binary and divide the population into privileged 

and unprivileged based on a sensitive attribute that protects against unfairness such as age, race, 

gender, etc. (Chen et al. 2022). Issues with this type of quantitative testing is that it relies on 

sensitive attributes when in practice that information may not be available in a data set (Awasthi 

et al. 2021). For instance, Twitter/X does not provide such demographic information from its users 

to researchers. Additionally, studies report that current fairness algorithms and metrics cannot 

handle multi-class problems and non-binary problems (Hort et al. 2022). Therefore, if your data 

set does not have sensitive attribute data or has more than two labels, current models that assess 
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fairness would not be adequate.  

Critiques have surfaced asserting that quantitative research undervalues equity, and when 

confronted with equity shortcomings, statistical measures are employed to defend the validity of 

such an analysis (Gillborn et al. 2018). However, with fairness testing there is no guarantee or 

empirical evidence demonstrating its applicability or effectiveness in real-life scenarios (Chen et 

al. 2022). Researchers further expose that the report of low bias scores using such quantitative 

approaches does not automatically equate to actual fair application of models (Hort et al. 2022). 

Social scientists strongly argue for the imperative of combining machine learning models with a 

qualitative approach to thoroughly assess bias mitigation efforts (Monroe-White and Lecy 2022). 

Protocols such as the Wells-Du Bois Protocol for machine learning biases could be deployed to 

overcome systemic inequities ingrained in data sets which historically sought to oppress 

marginalized communities (Monroe-White and Lecy 2022). Use of intentionally building machine 

learning models with qualitative protocols is a promising alternative for the limitations and 

discrepancies within current algorithms for bias control. 

This research project addresses several research gaps: 1) for social media analysis methods: 

integration with community-based applications that may improve capture of incidents relating to 

emergency preparation and response (Chair et al. 2019), 2) incorporating equity-based practices 

to mitigate machine learning bias (Monroe-White and Lecy 2022; Yang et al. 2020), 3) creating a 

method to effectively augment location-specific social media data with community data to address 

the shortcomings that exist in the ability to more rapidly, and effectively, communicate and 

respond to crisis events (Lovari and Bowen 2019; Purohit et al. 2019), and 4) developing 

algorithms that can address imprecise location information in social media data when used to 

augment community data on crisis events. Intervening and alleviating disasters as they occur in 
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real-time poses an issue for many emergency responders. Again, before necessary federal 

assistance is given, state and local emergency management personnel need to make decisions to 

prepare and respond to disasters to mitigate their effects with available resources. This can be 

facilitated through a more community focused, equitable approach to better understand local needs 

of citizens and engaging with community discussions that are occurring. To address these gaps, 

we investigated the following research question: What is the impact of integrating social media 

with community-driven applications for the capture of incidents related to emergency 

management, mitigating machine learning bias, and validating its respective effectiveness (e.g., 

accuracy)? 

In the following chapter (Chapter 5), we develop and apply a model (i.e., Application I) that 

assesses community needs and provides context for emergency responders using machine learning 

techniques to train the model on previous events and fuse data from the social media platform 

Twitter/X and community-driven application Waze. We also mitigate machine learning bias of the 

framework using an equity-based protocol to show how our methodology integrated equity 

measures. Then, in the ensuing chapter (Chapter 6), we develop and apply a model (i.e., 

Application II) capable of addressing location inaccuracies that exist in many Twitter/X postings. 

Both models address the needs identified in our interviews with state DOTs (Chapter 2) and the 

key performance indicators established in our proposed competency matrix (Chapter 3). We 

anticipate these machine learning-enabled model frameworks can enhance event detection, provide 

further situational awareness about an emergency event, and thus improve crisis event response.  
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5 MODEL DEVELOPMENT AND APPLICATION I: TRANSFER LEARNING 

FOR FUSING LIMITED GEOREFERENCED DATA FROM 

CROWDSOURCED APPLICATIONS ON THE COMMUNITY LEVEL 

 
The scope of this initial model framework is two-fold: 1) use historical data to develop a robust 

model and incorporate more community insights and 2) perform data integration across social 

media and community-driven platforms at the community scale. The reason this study is at the 

community-scale (i.e., neighborhood to city scale) is to correspond to the bounding box locations 

of Twitter/X, which will be explained in more detail later. To achieve these aims, we fuse 

Twitter/X and Waze data and propose machine learning approaches and spatiotemporal data fusion 

that utilizes labeling from Transfer Learning for Twitter/X and Waze data sets related to natural 

disaster events. Figure 1 illustrates the overall framework developed for the integrated approach 

with the goal of augmenting georeferenced social media data (i.e., Twitter/X) with corresponding 

data from a community-driven application (i.e., Waze). The framework overall utilizes the 

techniques of Transfer Learning, NLP, LDA, Semi-Supervised Learning (SSL), and spatial fusion 

to produce the output of an augmented data set that classifies each Twitter/X and Waze pairing to 

elucidate community conversations and issues. In Figure 1, the Source Domain Model is the 

component projected up and to the right from the Transfer Learning box, which produces the 

output of labels. The rest of the process occurs in the Target Domain Model which produces the 

output of a map of community needs. The following sections will explain in further detail the 

workflow of the framework outlined in Figure 1 below.  
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Figure 1. Framework. High-level framework for georeferenced data fusion (Twitter/X and 

Waze) workflow, including the process for transfer learning. The transfer learning process 

leverages pre-existing knowledge, which in this case is derived from historical tweets, to 

create the source model. Subsequently, the source model is trained and integrated into 

another domain, referred to as the target model. Here, the domain knowledge from the 

source model is effectively incorporated to amplify performance and understanding. 

 
The evident biases of social media data should not discourage efforts to mitigate biases in models 

that utilize this data. Even if acceptable metrics in terms of precision, recall, and F1 score are 

achieved, it remains essential to assess the potential impacts of this work in practice through 

recognizing biases. The Wells-Du Bois Protocol is a tool designed to determine if research 

qualitatively achieves a baseline level of bias mitigation in social scientific research for neutral 

data collection and machine learning execution. It consists of three dimensions and seven items: 

Bad Data - 1) Inadequate Data and 2) Tendentious Data; Algorithmic Bias - 3) Harms of Identity 

Proxy, 4) Harms of Subpopulation Difference, 5) Harms of Misfit Models, and Human Intent – 6) 

Do No Harm and 7) Harms of Ignorance. In this study, these items were viewed through the 
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domain of utilizing social media in crisis event/emergency management. Detailed information 

regarding each item and the corresponding steps undertaken in this study to assess the fulfillment 

of the specified standard is provided in a later section.  

5.1 Source Domain Model  

Historical Data Collection. To enhance the presence of the community's perspective, we 

incorporated historical data into our framework. We analyzed different major disasters of the same 

type (i.e., hurricanes), to track sentiments over time and to capture different communities who may 

have been engaged for one disaster but not another. The assumption posits that within the historical 

events under examination, varying geographical regions or demographic groups will be 

represented, as each catastrophic event attracts distinct audiences. Historical data were collected 

in the form of tweets from three hurricanes that occurred in Florida in 2020: Hurricane Eta 

(November 7th, 2020 - November 12th, 2020), Hurricane Isaias (July 31st, 2020 - August 4th, 2020), 

and Hurricane Sally (September 14th, 2020 - September 28th, 2020) (FEMA 2023a). 

Filtering. In this process, tweets in the state of Florida were extracted and filtered based on 

location and keywords in the form of a disaster-based glossary we developed (see Table 7). Past 

studies have shown that the use of hashtags can limit the number of irrelevant tweets (Brunila et 

al. 2021). However, in this case the quality of data with hashtags was not sufficient, therefore 

restricted keywords were determined to be used after several tests were run and analyzed using 

one or the other (or both). Hashtags are also constantly changing and evolving. Therefore, for the 

model to be more generalizable the decision was made to use only keywords. Hence, we created a 

disaster-based glossary of common words related to natural disasters that could indicate a crisis 

event. The disaster-based word glossary with 103 words was developed based on the Emergency 

Events Database (EM-DAT), Federal Emergency Management Agency (FEMA), United Nations 
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Office for Disaster Risk Reduction (UNDRR), and Waze. Web scraping was performed to identify 

the keywords from the respective sites, and manual inspection was done to ensure there were no 

duplicate terms among the sources and words that were fully applicable or used commonly were 

represented from longer phrases (e.g., used the word “damage” instead of “estimated damage” in 

the EM-DAT database). The tactic was designed to maximize the number of relevant tweets that 

could be collected. 

 
Table 7. List of keywords used to create disaster-related word corpus, and their source. 

Keywords     Source  

Affected, Airburst, Avalanche, Chemical, Climate, Coastal, 
Collapse, Damage, Death, Derecho, Disaster, Disease, Drought, 
Earthquake, Epicentre, Epidemic, Explosion, Famine, Fire, 
Flood, Flow, Fog, Food, Freeze, Frost, Hazard, Homeless, 
Hurricane, Ice, Impact, Injured, Injury, Lahar, Lake, Landslide, 
Lava, Lightening, Liquefaction, Loss, Missing, Niño, Poisoning, 
Power, Rain, Risk, Seiche, Shake, Sinkhole, Soil, Storm, 
Subsidence, Surge, Tornado, Transport, Tsunami, Typhoon, 
Volcanic, Vulnerability, Wave, Wind, Winter 

EM-DAT (CRED 2009) 

  
ARC, CDC, CERT, Community, Crisis, DHS, Drill, 
Emergency, EMS, EOC, EPA, Evacuate, Evacuation, FEMA, 
HAZMAT, IMT, Incident, JIC, JIS, NGO, NIMS, Procedure, 
Protection, Rescue, Responder, Response, Shelter, Structural, 
Threat, Tree, Warning, Watch, Water 

FEMA (FEMA 2023b) 

  
Building, Critical UNDRR (UNDRR n.d.) 

  
Accident, Alert, Construction, Jam, Road, Traffic, Weather Waze (Waze 2017) 

 
Pre-Processing. Textual data can be informal and not structured in a way to enable classification 

processes. Text from social media can be noisy containing special characters (i.e., emojis and 
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symbols), slang and misspelled words, hashtags, URLs, and more (Salas et al. 2017). Text mining 

approaches ease the difficulties associated with the time consuming and inconsistent process of 

manually cleaning data, and have been proven to have higher accuracy than no pre-processing 

techniques being performed at all (Mhatre et al. 2017). In order to prepare all text for the classifiers, 

we removed these additional elements (e.g., extra URLs, white spaces, special characters, upper 

case words, and unnecessary words) using FastText (FastText 2023). This is done through standard 

techniques such as tokenization (i.e., breaking a sentence into words), stop words removal (i.e., to 

simplify text and remove words that add no meaning such as “a”, “the”, etc.), stemming (i.e., to 

find the root/stem of the word), and lemmatization (i.e., generating the base or dictionary form of 

a word) (Mhatre et al. 2017). After these pre-processing techniques, we had a clean corpus of 

words and the fused textual information was converted to vectors to be utilized in the LDA model 

to generate labels based on all text.  

Topic Modeling. To obtain the labels for classifying the data set, LDA topic-based modeling was 

performed. We utilized different LDA-related Python packages to model our pre-processed tweets, 

running the model with different parameters (altering the number of topics and words within each 

topic), and using a standard deviation test to determine the number of topics. From the standard 

deviation test, 4-6 topics was identified as the preferable range, and running the model on these 

three different options, 5 topics was deemed as the most optimal. Also, to further refine the model, 

we went back and modified the parameters further to only include words that were nouns, 

adjectives, and verbs in the pre-processing portion. After running several tests, the number of 

topics was set to 5 (with 10 words in each topic). Interpreting each topic, the topics were: “0”: 

Broadcast/News (e.g., anything to do with the news, the government, alerts, etc.), “1”: Power (e.g., 

anything to do with power outages, power lines, power systems, lights, Wi-Fi, Internet, etc.), “2”: 
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Traffic Incidents (anything to do with car crashes, congestion on the roads, evacuation, etc.), “3”: 

Forecast/Weather (anything to do with the climate, flooding, etc.), and “4”: Miscellaneous 

(anything that does not fit into the categories and/or has nothing to do with a disaster). The last 

topic also acts as an additional filter to catch tweets that made it into the text corpus that may have 

a different interpretation of a word in the disaster-based glossary. Throughout the rest of this paper, 

the labels will primarily be referred to by their corresponding numerical identifiers as mentioned 

in the previous sentence. The top eight most frequent words identified in the LDA model were: 

watch (appearing 7,772 times), broadcast (appearing 4,910 times), storm (appearing 4,553 times), 

chance (appearing 3,293 times), tonight (appearing 2,960 times), live (appearing 2,391 times), 

forecast (appearing 2,323 times), and alert (appearing 1,960 times). These top words indicate 

discussion around a time-sensitive storm, and that needs pertain most frequently to the topics 

connected to weather and what is being outlined in news reports. This is beneficial to operators as 

it can help them with tasks immediately after a disaster such as crafting public safety messaging 

relevant to what people may or may not already know about the disaster, or emerging risks 

responders will face when dispatched.   

Semi-Supervised Learning. The topics from the LDA model described in the previous section 

(i.e., “0”: Broadcast/News, “1”: Power, “2”: Traffic Incidents, “3”: Forecast/Weather, and “4”: 

Miscellaneous) were used as labels in this SSL approach. The model was generated using a Label 

Spreading package (Zhou et al. 2004). Roughly 1% of the historical storms data set was manually 

labeled, leaving 99% unlabeled. To determine the 1% of the fused data that would be manually 

labeled, the data set was randomized using a function in Python, then labeled with equal 

distribution of each topic classification. Labeling 1% of the data was determined to be the guideline 

for how much of the data should be labeled, as the aim is to limit the manual training of the data, 
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and labeling 1% has been found to achieve high accuracy (Chen and Wang 2017). The annotators 

consisted of two members from our research team. Annotators divided the 1% of the data set that 

required labeling according to a well-defined and mutually agreed-upon set of label definitions. 

After each designated annotator completed their assigned portion, they collaboratively reviewed 

and discussed the labeling. In the rare event of any disagreement, a third team member was 

available to arbitrate. This internal validation protocol was implemented throughout the labeling 

process (Chowdhury and Zu 2023). 

The data was split into 70% being the training set and 30% being the testing set. This was fed into 

the model, generating pseudo-labels for the entire data set based on the model’s prediction. A 

validation set of 20% of the data was extracted from the training set prior to this analysis, to provide 

an unbiased evaluation of the model fit on the training set and to tune the hyperparameters. Once 

the model was completely trained, we ran the testing set to see if the model could predict labels on 

this data set with adequate accuracy through our evaluation metrics discussed in the next section, 

and labels were successfully generated from the model for our testing set. With this task completed, 

we then had a trained model that was ready to be used for the Transfer Learning process. 

Evaluation Metrics for the Model. To assess the validity of the model, precision (i.e., true 

positives over all that was predicted as positive), recall (i.e., true positives over all that should have 

been predicted as positive), and F1-score (i.e., combination of precision and recall, the overall 

accuracy) were calculated (see Equations 1-3), along with creating confusion matrices. Table 8 

shows the classification reports for the historical data set. “Support” outlined in last column of 

Table 8 and other classification report tables, is the count of occurrences experienced in each class. 

A confusion matrix was generated, Figure 2, based on these initial scores and a single-fold analysis. 

A 10-fold cross validation was then done again on the precision, recall, and F1-score metrics to 
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generate a final accuracy, and a confusion matrix was also produced for this cross validation based 

on the label spread performance of the model (see Figure 3). These were done for the 5 topics (i.e., 

the 5 classes in the classification reports).  

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
       Equation 5.1 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
      Equation 5.2 

    
𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
    Equation 5.2 

 
 
where TP and TN are the number of true positives and true negatives, and FP and FN are the 
number of false positives and false negatives. 
 

 
Table 8. Classification report for label spread for historical data. 

 Precision Recall F1-Score Support 
0 0.95 0.90 0.93 2270 
1 0.82 0.59 0.68 2221 
2 0.93 0.69 0.79 666 
3 0.86 0.87 0.87 2476 
4 0.81 0.95 0.88 5392 
Accuracy   0.85 13025 
Macro avg 0.87 0.80 0.83 13025 
Weighted avg 0.85 0.85 0.85 13025 
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Figure 2. Matrix. Confusion matrix for label spread for historical data (no cross 

validation). 

 
 

 

Figure 3. Matrix. Confusion matrix for label spread for historical data (cross validation). 

With average accuracy across folds: 0.833. 

5.2 Target Domain Model  

Case Study. According to FEMA, the state of Florida has experienced over a dozen major disaster 

declarations in the last decade alone, ranging from tornadoes to hurricanes, with one of the most 

recent major disasters being Hurricane Ian (FEMA 2023a). Despite Florida being a coastal state 

that experiences numerous natural disasters, historically it has just under a 70% success rate with 
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being granted major disaster status for aid disbursement (Schmidtlein et al. 2008). Hurricane Ian 

is tied as the fifth strongest hurricane to hit the United States and began on September 23rd, 2022 

in the central Caribbean as a tropical storm, and three days later on September 26th, 2022 became 

a hurricane (NOAA US Department of Commerce 2022). When Hurricane Ian approached 

southern Florida on September 28th, 2022 it was a Category 4 storm, and left Florida the next day, 

with intense winds and rainfall, as a tropical storm again heading to South Carolina (NOAA US 

Department of Commerce 2022). This case study, which we conducted to demonstrate our 

framework focuses on the “immediately after” part of the disaster cycle (i.e., meaning right after 

the disaster has left an area) to see community conversations based on the impacts of the hazard. 

This also aligns with when damage assessments would typically take place. Other studies have 

investigated two-week periods beginning at the landfall or origin of when the storm begins 

(Samuels and Taylor 2020) and showed that at two weeks the discussion gradually decreases (Zou 

et al. 2018). Since this study is focused on immediately after the storm exits an area, and 

investigates when people could be most engaged, a weeklong period was studied for Hurricane 

Ian, making the “Post-Disaster Period” September 29th, 2022 to October 6th, 2022. Hurricane Ian 

also was declared a major disaster on September 29th, 2022 (FEMA 2023a), emphasizing the 

importance of promptly understanding the ongoing situation with the expeditious declaration.  

Data Collection. Data were collected from Twitter/X and Waze during this period for Hurricane 

Ian with 10,209 filtered tweets and 15,913 Waze alerts. Twitter/X data were collected through 

Twitter/X’s public Application Programming Interface (API). Data were retrieved for Hurricane 

Ian from a live data collection stream developed in Python within our Lab. The data are collected 

by year, month, day, and hour and are stored in JavaScript Object Notation (JSON) format. The 

Waze data used for this study were Waze alerts, which were initially collected through the Waze 
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GeoRSS Feed that is shared with Connected Citizens Program (CCP) partners, such as the Georgia 

Department of Transportation (GDOT), for further configuration. The Waze data are collected in 

Extensible Markup Language (XML) format, showing pertinent information such as the date and 

time of an incident, precise coordinates, type and subtype of an alert, street name where the alert 

occurred, country, road type, report rating, confidence, and reliability of incident feeds within the 

bounding box of the state of Florida.  

Parsing (Waze) and Filtering (Twitter/X). For Waze alerts, the provided GeoRSS feed collected 

data that needed to be transformed to a readable format for the model. The same filtering process 

in the Source Domain Model for tweets was executed here to maximize the number of relevant 

tweets on Hurricane Ian in Florida.  

 
Table 9. Classification report for label spread for Hurricane Ian (with transfer learning 

from historical data). 

 Precision Recall F1-Score Support 
0 0.93 0.73 0.82 205 
1 0.85 0.49 0.62 89 
2 0.92 0.87 0.89 146 
3 0.77 0.92 0.84 968 
4 0.91 0.85 0.88 1655 
Accuracy   0.86 3063 
Macro avg 0.87 0.77 0.81 3063 
Weighted avg 0.86 0.86 0.85 3063 

 
Transfer Learning. The Transfer Learning process is outlined in Figure 1 and the “Source 

Domain Model” section. The model built in the Source Domain Model is already trained and ready 

to be used at this point in the Target Domain Model. There is no more training or manual processes. 

It is fully automated since the Source Domain Model was saved and applied here. When the data 

for Hurricane Ian was run through the saved model, just as in previous evaluations, the predicted 
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labels were assessed with precision, recall, and F1 scores (see Table 9) along with confusion 

matrices (see Figures 4 and 5). The outputs demonstrated that the model is a reliable model, even 

having a higher accuracy score than the Source Domain Model.  

 

 

Figure 4. Matrix. Confusion matrix for label spread for Hurricane Ian (no cross 

validation). 

 
 

Figure 5. Matrix. Confusion matrix for label spread for Hurricane Ian (cross validation). 

With average accuracy across folds: 0.834. 

Spatiotemporal Data Fusion. The benefit of data integration is being able to increase and 

strengthen data sets that complement one another. Both Twitter/X and Waze data sets have date, 

time, location, and textual information pertaining to event detection for a natural disaster. With 
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Twitter/X, the textual data is the tweet itself (i.e., what the user has posted) and the location is in 

the form of a precise location or bounding box with the current API (most are the latter). For Waze, 

the textual data is the alert type and subtype given to the report that the user assigns to the incident, 

and it provides a single coordinate pair. Waze alerts are classified with the following types: 

Accident, Jam, Weather hazard/Hazard, Miscellaneous, Construction, and Road closed. The 

subtypes provide more detail for each alert type such as Weather hazard/Hazard displaying 

subtypes pertaining to fog, hail, rain, snow, hurricanes, etc.  

To fuse these data sets, we identified and paired the tweets and Waze alerts within minimum spatial 

proximity. This was achieved using the Haversine Distance between locations (see Equation 4), 

which can be used to calculate distance between latitude/longitude pairs for real-time classification 

(Zubiaga et al. 2017). With the current API's bounding boxes for tweets described as being able to 

be as large as 25 miles in width and height (Twitter/X Developer Platform 2023), in order to refine 

the spatial scale of the tweets collected they were further filtered to identify neighborhood or city 

information (i.e., shrinking the size of the bounding box). To obtain coordinates for each 

neighborhood or city bounding box the center of each bounding box was found, which has been 

done in previous work on a larger scale (Zubiaga et al. 2017). The crowdsourced data produced by 

Waze has been reported to be slightly inaccurate for location, with about a 30 second delay in 

reporting causing an incident to be recorded 0.8-km (i.e., half a mile) away (Amin-Naseri et al. 

2018). The parameters for selecting the tweets closest to Waze reports were set within 1.61-km 

(i.e., 1-mile) of location to one another, to account for delays of up to 60 seconds in reporting an 

incident. The merge is based on location and date, displaying all attributes of both feature layers 

in one data set. The output is a fused data set, matching a tweet with the nearest Waze alert with 

each data point showing the paired data sets’ information along with a classification label and 



 

58  

distance from one another. Upon completion, there were 2,566 Twitter/X and Waze pairings. Note 

that the same tweet can be paired to multiple Waze alerts depending on proximity (see Figure 6). 

d = 2r arcsin(�sin2 �φ2−φ1
2

� + cos(φ1) cos(φ2) sin2(λ2−λ1
2

)) Equation 5.4 
 

where 𝜑𝜑1 and 𝜑𝜑2 are the latitude coordinates of two points, and 𝜆𝜆1 and 𝜆𝜆2 are the longitude 
coordinates of two points.  

 

 

Figure 6. Illustration. Example of how one tweet, within a one-mile radius of a Waze alert, 

can make 3 different pairings depending on location. 

Generalizability. To test generalizability of the proposed framework, the model was run again on 

data in a different state, for a different storm. Tropical Storm Zeta in Georgia was the storm used 

to test the generalizability of the model. The disaster began on October 21st, 2020 in the western 

Caribbean as troubled weather, being slow to develop, then on October 23rd, 2020 forecasts 

reported Zeta disturbance being brought into the southern Gulf of Mexico along with greater odds 

of this weather being an actual storm (NOAA US Department of Commerce 2020b). On October 

25th, 2020 the tropical storm formed and strengthen over the next few days as it began approaching 

the U.S., with its highest strength being reported as a Category 3 hurricane (NOAA US Department 

of Commerce 2020b). Georgia news outlets, and other mediums (e.g., National Weather Service) 

reported on Tropical Storm Zeta with the storm striking and leaving the state of Georgia on October 

29th, 2020 (FEMA 2021; NOAA US Department of Commerce 2020a). This test focused on dates 
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pertaining to after this incident, the same “right after” timing with a weeklong period done for 

Hurricane Ian in the case study above. The “Post-Disaster Period” was October 30th, 2020 to 

November 6th, 2020. The results of the study (Table 10) show that the model is acceptable not 

only for the state of Florida but can be transferred and used effectively for Georgia. The results 

suggest the possibility of using this framework for other events in other locations as well, as it has 

an accuracy score that is within a 3% margin of the model outputs from Hurricane Ian. Confusion 

matrices with and without cross validation were also produced for the Georgia event (see Figures 

7 and 8). 

 
Table 10. Classification report for label spread for Tropical Storm Zeta in Georgia. 

 Precision Recall F1-Score Support 
0 0.94 0.48 0.64 127 
1 0.95 0.28 0.43 76 
2 0.93 0.92 0.93 74 
3 0.85 0.65 0.74 343 
4 0.81 0.98 0.89 968 
Accuracy   0.83 1588 
Macro avg 0.90 0.66 0.72 1588 
Weighted avg 0.84 0.83 0.81 1588 

 
 

 

Figure 7. Matrix. Confusion matrix for label spread for Hurricane Ian (no cross 

validation). 
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Figure 8. Matrix. Confusion matrix for label spread for Hurricane Ian (cross validation). 

With average accuracy across folds: 0.812. 

Case Study Visualization. Figure 9 shows tweets fused with Waze alerts being spatially mapped 

(displayed with the labels for each pairing), with context embedded in each icon on the map for 

emergency personnel to have access to in a visual interface. An example pairing is also pictured 

in Figure 9 in the blue table, showing how a tweet can add further context to a Waze alert beyond 

its original classification. As the Miscellaneous label was noted as an additional filter, it is not 

displayed in the final visualization. The visualization shows a substantial amount of fused data 

points related to forecast/weather and traffic. The discussion of these topics in particular aids 

emergency operators and responders with actions such as feasibility of potential infrastructure 

repair, cleanup, or evacuation planning. Engaging in weather-related discussions enables 

responders to obtain crucial information, such as the extent of severe flooding in a building or 

instances of lightning striking trees. Traffic discussion allows them to know what major route or 

highways are jammed, through the augmented data from Waze. They can then select the proper 

evacuation routes that avoid congestion, with context of how long it might take for traffic to lighten 

up (e.g., accident, debris on highway, how many lanes are closed, etc.). Furthermore, with the 

location information, local governments will also be able to see exactly how a portion of a 
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neighborhood might be affected by a disaster, which can help guide what preparedness plans or 

mitigation tactics can be explored. All this knowledge assists them in comprehending the specific 

impacts of the disaster and to tailor their response efforts accordingly. 

 

 

Figure 9 Maps. Example of a classified Twitter and Waze pairing output for Hurricane Ian 

in Florida, zooming in on an area displaying multiple topics from the study. 

5.3 Mitigating Machine Learning Bias 

Table 11 below outlines how the model was designed toward equitable practices. It is important 

to acknowledge that this process does not guarantee the model has no problems in terms of 

potential bias, but rather serves as a means to implement mitigation strategies and strive towards 

achieving a threshold for reducing biased research practices; this protocol emphasizes that 

mitigation efforts are not primarily aimed at solving the issue at hand, but rather at acknowledging 

and addressing the issue prior to the implementation of a model (Monroe-White and Lecy 2022). 
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By directing our attention towards the population we aim to serve, those with access to and who 

use social media and community-driven applications, we meticulously evaluated our data 

collection and model implementation and adhered to the seven items outlined in the Wells-Du Bois 

Protocol to actively work towards mitigating potential biases. 

5.4 Discussion  

The model developed and applied in this research contributes to the larger discussion of enhancing 

community perspective in disaster informatics. As discussed relative to FEMA’s disaster 

declaration process, it is crucial for emergency management agencies to receive information, from 

models such as the one from this study that can represent and assess what communities need in 

near real-time from the people themselves. Communities, such as areas in Puerto Rico after 

Hurricane Maria, have been documented as being failed by federal agencies due to these 

organizations not being fully prepared to respond to disasters or being able to anticipate locals’ 

needs (Sullivan and Schwartz 2018). Knowing what an area needs while a crisis occurs, can 

prevent missteps such as this.  

It has also been shown that federal disaster relief falls short of equitable measures, leaving 

disenfranchised and historically marginalized communities at a disadvantage, with FEMA 

themselves stating “For disaster preparedness, mitigation, response and recovery to drastically 

improve in 2045, emergency management must understand equity and become equitable in every 

approach and in all outcomes” (National Advisory Council 2020). This is why some of their goals 

in their 2022-2026 FEMA Strategic Plan is to have more of a “people first approach” and “meet 

current and emergent threats” (FEMA 2023d). To address these needs, our framework is centered 

around community perspective and constructing a system that keeps equity at the forefront and 

acknowledges current disparities and potential impacts of machine learning efforts.  
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Table 11. Model Analyzed with the Wells-Du Bois Protocol (Monroe-White & Lecy 2022). 

Dimension Item Actions Taken to Mitigate Bias 
Bad Data Inadequate Data - Does the 

data exhibit systematic 
omissions or 
misclassifications of 
certain subpopulations?  

Reporting data sizes and metrics is needed to overcome this. 
Interpreting this to social media in disaster management, applicable 
descriptive statistics are given in the training data sets and are separated 
by group identities (i.e., the classification of labels). 

 Tendentious Data – Does 
the model reflect subjective 
decisions? 

Disclosure of human judgement is needed. We disclose in our model 
that 1% of our model is manually labeled, however, the labels 
themselves that were generated do not pose bias as they were 
constructed with an LDA model based on the textual information 
provided by the people and not influenced by the researchers.  

Algorithmic 
Bias 

Harms of Identity Proxy - Is 
there a potential for the 
model to exhibit systematic 
biases towards specific 
races, genders, or social 
classes?  

The model did not consider race, gender, or social class as factors for 
the desired outcome. The way Twitter/X and Waze are both designed, 
it does not provide such demographic data per post, and only the text 
and location were needed in this study. This is because in the context of 
immediate emergency response, it is challenging to prioritize one life 
over another, as natural disasters can strike without regard for such 
distinctions. While indicators like community vulnerability would be 
crucial for assessing measures like these, the focus of this study was to 
identify and classify imminent needs of social media users.  

 Harms of Subpopulation 
Difference - Does the 
algorithm demonstrate 
varying performance 
outcomes among different 
subgroups? 

This study caters to the population that relies on these platforms for 
communication during a crisis, thereby considering them as a distinct 
demographic subset in itself. As mentioned previously, only the text and 
location of each data source was used, the final output does not note 
who the user was but solely what they said and where they are for 
enhanced context of the disaster located (i.e., maintaining consistency).  

 Harms of Misfit Models – 
How does the model assess 
error? What are the 
broader public and social 
implications of this 
research? 

The model undergoes cross validation to avoid over-fitting. The goal of 
this research is serving the population who uses such platforms to 
communicate during a crisis, to aid and enhance the decision making 
process for emergency management personnel. The impact of this work 
can improve allocation of resources for emergency events.    

Human 
Intent 

Do No Harm - Are you 
ensuring transparency 
regarding the objectives 
and aims of your research? 

The goal is for this work to be implemented into agencies such as state 
DOTs, we make sure to document and share this work both with 
applicable stakeholders and the research community. 

 Harms of Ignorance - Have 
you carefully examined the 
potential unintended 
consequences of your 
research? 

We have examined the unintended consequences of our research. For 
instance, if a cyber-attack were to occur on this model as it was 
deployed into society, adversaries would have knowledge of 
communities that are currently at risk and what they proclaim to need. 
Adversaries could send phishing emails, tweets, etc. to try to take 
advantage of those impacted populations. Inclusion of protective 
measures should be done for such a system.  
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Studies such as this add to the growing body of knowledge of determining ways to more accurately, 

and effectively, recognize community needs during or after a disaster to better serve society with 

a community centered approach.  

The framework also guides decision making towards equitable response to disasters. It is important 

that computational models work towards fairness as most are currently unfair due to training data 

that can disproportionally affect marginalized populations, and not considering the harmful effects 

a model can have when integrated in the real world (Monroe-White and Lecy 2022). Disparities 

such as wage gaps, mortality, and access to care can be seen in all areas of life and the built 

environment, and when exposed to natural disasters such disparities can be exacerbated when not 

accounted for properly. Research indicates that there are still few studies on infrastructure and 

social equity (Dhakal et al. 2021). Social equity systems research in emergency management and 

disaster research has employed analyses of social vulnerability to expose how disenfranchised 

populations recover at a slower rate back to their pre-disaster state (Kim and Sutley 2021). Often 

the occurrence of natural disasters is viewed as “equal opportunity” in the sense that storms, 

tornadoes, etc. do not intentionally target a certain population, they just occur haphazardly and can 

damage everyone just the same (Lieberknecht et al. 2021). While it is true the damage done by 

major disasters on the surface can be the same (e.g., power outages, extensive flooding, etc.), the 

post-disaster and recovery phase is not an “equal opportunity” when it comes to the dissemination 

of resources and the time it takes to re-build a community depending on its pre-existing conditions. 

This phenomenon may arise as a result of a limited conceptual framework that fails to account for 

the disparities inherent in contemporary machine learning techniques employed to assist 

communities, wherein the incorporation of equity benchmarks or the pursuit of fundamental bias 

reduction may be overlooked. In some cases, without adequate support a disenfranchised 
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population that is met with an emergency event may never fully recover because they already 

began at a deficit. Addressing such disparities in the physical, economic, and social environments 

could improve infrastructure systems and approach equity to establish a culture that provides just 

assets, funds, policies, and education to communities that need it most.  

5.5 Conclusion 

This study was able to identify areas in Florida that were impacted by a disaster with augmented 

context of specific needs based on classification of a paired data set employing machine learning 

techniques. The final output for the historical data identified pertinent topics that could be 

transferred and applied for use on future hurricanes. The final output for the Post-Disaster Period 

of Hurricane Ian data showed extensive discussion related to the forecast and weather issues related 

to the storm, as well as the traffic occurring within communities due to the disaster. This research 

addresses the post-disaster period of a natural disaster, focusing on disasters deemed as hurricanes 

and tropical storms for emergency responders, to be able to aid civilians and distribute the 

necessary resources to specific areas more quickly and efficiently. The model addressed the 

research question: What is the impact of integrating social media with community-driven 

applications on improving the capture of incidents related to emergency management, mitigating 

machine learning bias, and validating their respective effectiveness? The comprehensive 

investigation demonstrated the integration of social media data with community-driven 

applications, thereby amplifying the efficacy in detecting and documenting incidents from 

communities relevant to emergency management. Additionally, our model was capable of 

accurately representing pertinent community needs while concurrently adhering to a baseline 

standard for equity through mitigation of machine learning bias. This was evidenced through an 

illustrative case study using a machine learning-based fusing Twitter/X and Waze through Transfer 
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Learning, NLP, and spatiotemporal analytics on the georeferenced data streams pertaining to 

emergency events to accurately detect the location and type (i.e., flooding, road closure, etc.) of 

an event. To the best of our knowledge, this research project represents one of the initial endeavors 

to integrate the Wells-Du Bois protocol in order to ascertain the attainment of a fundamental 

threshold of bias mitigation.  

The practical contributions of our research include aiding emergency management decision 

making and situational awareness for disasters as well as improving allocation of resources to 

reduce the harmful effects of disasters. It adds to the growing body of knowledge on this topic 

addressing the shortcomings of Twitter/X and Waze applications for disaster detection and 

effective augmentation of platforms such as these. It establishes a foundation for 1) an integrative 

approach between social media and community-driven applications for crisis event detection 

towards further expansion of response capacity for real-time decision making and 2) including an 

equity appraisal through incorporating equity protocols into the data process.  Understanding such 

potential disparities is crucial to discover equitable ways to alleviate the subsequent recovery 

process for those without the necessary resources and contribute to bolstering community 

resilience.  

5.6 Limitations and Future Work 

Although Twitter/X is the world’s largest microblogging social media network and a popular 

platform used to extract information for research purposes, latitude and longitude pairs (i.e., 

precise coordinates) of tweets are no longer automatically attached to tweets, reducing the number 

of precisely located posts since about 2016 (Maurer 2020). It is optional for users to share their 

location, thus most tweets collected through Twitter/X’s streaming API are not georeferenced with 

exact location but with bounding boxes from place information instead (Maurer 2020). For the 
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model developed and applied in this chapter, both precise coordinates (when provided) and 

bounding box coordinates were utilized for tweet location information on the neighborhood and 

city level. However, more advanced algorithms are required to address location inaccuracies. This 

is explored and addressed in the next chapter. 

As highlighted earlier as a challenge with social media, the volume of data is an ongoing and 

probable obstacle when dealing with Twitter/X data. Using social media or community-driven data 

in disaster research is heavily reliant on citizens participating and providing useful information on 

such platforms. While this information can be useful to measure other metrics or relationships, in 

real-time tracking when trying to assess the needs of a community, an extensive community voice 

is needed. Additional efforts can be made by relevant agencies and stakeholders to educate 

community members about leveraging these platforms as a means of meaningful interaction, 

fostering actionable outcomes. Alternatively, they can also prioritize the promotion of their 

existing systems to ensure greater engagement and effectiveness. However, we discovered through 

a disaster-based glossary for filtration and the use of Transfer Learning, more relevant tweets can 

be found than previous work (Salley et al. 2022). This framework accounts for scarcity of data and 

allows for a faster, more automated process when evaluating social media data.  

Lastly, as mentioned in Table 11, Twitter/X and Waze do not provide specific demographic 

information such as race, gender, or social class on a per-post basis. Consequently, the focus of 

this study was not on sociodemographic vulnerability but rather on the needs of populations 

affected by crises that rely on these platforms for communication. These populations can be 

considered a distinct demographic subset in themselves, highlighting Twitter/X's role as a social 

sensor. While it is important to note that these platforms do not represent the entire population, 

and recent, comprehensive demographic information has not been readily available since around 
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2013 (Wang and Taylor in 2016), it is worth mentioning that recent data suggests certain trends. 

For instance, among its multi-million users, approximately 37% of users are female, while 63% 

are male on Twitter/X; furthermore, users between the ages of 25 and 34 exhibit high activity, 

representing around 38% of users worldwide (Dixon 2023). The pursuit of representativeness of 

the data needs to be continuously asked and answered to further analyze any limitations of the 

research or further generalizability of its results (Kumar and Ukkusuri 2020) as no data set suits 

every single task and all can have some sort of limited scope (Nargesian et al. 2022). The most 

beneficial utilization of social media is achieved when it is used in conjunction with existing 

emergency management systems at local and government agencies, such as a Department of 

Transportation (DOT), as it does not holistically represent an entire community and other measures 

should be used to further contribute to decision making. 

Future work related to this framework should adapt this framework to completely online machine 

learning labeling, negating any manual process. Future work should also further examine historical 

data in relation to the typical engagement that communities have with emergency management 

(e.g., good or bad relationships, levels of engagement on social media, etc.) on different spatial 

and temporal scales. This study explored neighborhood and city levels day by day, but exploration 

of county and census level data on an hourly or minute basis may reveal other insights. This could 

also reveal how a community already utilizes local agencies in these spaces and can provide a 

baseline for how useful social media networks may be for real-time tracking in a particular area. 

How citizens currently use social media should also be continually re-evaluated, as new platforms 

are merging and old ones are obsolescing and updates to current platforms occur often. 

Additionally, it is essential to undertake extensive quantitative and qualitative investigations when 

dealing with complex issues like these to effectively counter computational biases during model 
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construction and deployment. Given the nature of these challenges, which rely on data and 

computational solutions, it becomes imperative to continue to investigate a range of bias mitigation 

methods. More approaches to determine the most appropriate strategy tailored to the unique 

demands of the research problem should be investigated. 

This study can be taken further in the future through the development of a process that works 

towards fairness more and establishing measures for proper allocation of resources. Presently, 

there exists a paucity of scholarly investigation concerning the integration of equity metrics or 

protocols in the utilization of social media within the scope of emergency management. Further 

exploration is called for to thoroughly examine ongoing constraints as it relates to equity measures 

in this domain, such as with specific population subsets, thereby fostering a more comprehensive 

depiction of society. 
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6 MODEL DEVELOPMENT AND APPLICATION II: ONLINE 

CONFIRMATION-AUGMENTED PROBABILISTIC TOPIC MODELING 

 
In this chapter we build upon the model developed and applied in the preceding chapter to improve 

the locational fusing of social and community data postings regarding crisis events. We consider 

a scenario in which online data streams are leveraged in emergency response, disaster 

management, or public health monitoring and disease control systems. Due to the real-time 

coordination in place in these systems, they rely on user-generated data (e.g., social media content, 

data generated through traffic-information applications, health-related data, and emergency 

hotlines) to monitor, detect, and respond to events and trends in a timely and effective manner. 

These systems, depending on the specific monitoring requirements, operate within a predefined 

spatiotemporal window, which is typically a short timeframe that encompasses real-time data 

collection and response. In this context, additional data becomes available online, helping to 

identify when and where specific relevant information may emerge after a certain delay. The 

objective is to develop a topic model based on the online data stream, with a focus on the topics 

of interest. The model continuously learns from historical and real-time data to enhance its 

detection algorithms and improve response strategies. 

Streaming data analysis in this way is crucial, as it enables the discovery of relevant topics within 

the selected content, which in turn plays a pivotal role in tasks like information augmentation 

(Salley et al., 2022; Wang et al., 2012; Yi and Allan 2009), detecting traffic or crisis events (Fan 

et al., 2020; Tien et al., 2016; Wang et al., 2019; Wang and Taylor, 2018; Zhang et al., 2017), and 

more. The key component of the aforementioned studies is the topic representations inferred from 

short text-based data. Conventional topic models, such as Latent Dirichlet Allocations (LDA) (Blei 

et al., 2003) and Mixture of Unigrams (MUG) (Nigam et al., 2000), when operating in fully 
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unsupervised settings, often exhibit suboptimal performance resulting from the sparse presence of 

relevant contents. The reasons for this can be attributed to two factors: (1) user-generated data 

being exceptionally brief (Lin et al., 2014; Yan et al., 2013), and (2) online data inherently 

containing noise (Morstatter et al., 2010). While various unsupervised topic models have been 

developed to address data sparsity (Qiang et al., 2020; Vayansky and Kumar, 2020), less emphasis 

has been placed on leveraging the data itself for model enhancement. Explicit methods for 

improving data quality through post-processing and annotations are often time-consuming and 

costly, especially given the online nature of the data (Aggarwal, 2011). 

In this study, as we introduce this challenge, our approach aims to integrate online data with topic 

models. We do so by introducing a confidence score associated with the periodic arrival of content 

of interest, which is derived from the combination of various sources of information. To 

demonstrate the aforementioned scenario involving online data, we provide a real-world 

application example. We consider the data source as a stream of tweets within a specific 

geographic area, re-calling that the Twitter/X API V2 has enabled streaming via bounding boxes 

(Khalid, 2019). We are interested in posts related to emergency events within this area. Waze, one 

of the largest GPS navigation apps, offers interactive features that allow users to share real-time 

traffic information and report crisis events. For the purposes of this research, Waze can serve as a 

valuable information resource, as its data can be correlated with the presence of relevant tweets 

within a common spatiotemporal window. One valuable aspect is nThumbsUp, which reacts and 

directly reflects the event’s significance within the online community. The primary concept here 

is to gather data that quantifies confidence within a smaller online community. If this score reaches 

a significant level, it may indicate that a larger online community, such as Twitter/X, is also 

discussing events of interest. See Figure 10 for the schematic demonstration. 
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The main problem addressed in this study is the design of a model capable of interactively 

confirming the presence of relevant information within the topic representations of interest, 

particularly in an online context. To the best of our knowledge, no prior studies have specifically 

addressed this setting leveraging a confidence score as a form of weak supervision to enhance an 

otherwise purely unsupervised model. We propose a novel online machine learning model that 

integrates a linear reward function linked to the confirmation confidence (e.g., nThumbsup) with 

the variational-Bayesian lower bounds of probabilistic topic models. The only modification 

applied to the topic model involves the incorporation of a variational distribution for document-

topic assignments through a bilinear function that connects variational posterior parameters and 

confirmation parameters. Our experimental results, obtained using real-world data, highlight the 

following advantages of the entire framework: 

1. The linear reward function for confirmation will eventually reveal topics linked to the 

events of focus. 

2. Empirically, simple baseline models, LDA and MUG, when augmented with the 

confirmation model, yield improved se-mantic interpretations. The results imply that the 

framework can be extended to other topic models. 

3. Our method can improve downstream tasks for event detection and data augmentations. 

Additional experiments demonstrate improvements in data labeling for classification and 

in measuring similarity/dissimilarity. 

4. A real-world case study demonstrates a potential application of our model for augmenting 

Waze alerts using the nThumbUps feature. 

 

  



 

73  

6.1 Literature Review 

To the best of our knowledge, this presents the first attempt at the interactive learning of a 

confirmation model and a topic model within an online setting, aiming to address the problem we 

have presented. Our work is related to probabilistic topic models with variational inferences and 

their applications in event detection and information augmentation. One of the earliest probabilistic 

topic models is the well-known Latent Dirichlet Allocation introduced by Blei, Ng, and Jordan 

(2003). The parameter estimation of LDA is challenging as the posterior distribution is 

computationally intractable (Sontag & Roy, 2011). Variational inference, where the posteriors are 

assumed to be multinomial and Dirichlet (Blei et al., 2003), has been one approach to address this 

issue. Hoffman et al. present the online variational inference of LDA (Hoffman et al., 2010). 

However, LDA and many of its extended versions struggle with learning topics from documents 

in the format of short texts, such as social media data from Facebook or Twitter/X, which typically 

contain only one or two topics, rather than a mixture of all topics (Vayansky and Kumar, 2020). 

One preliminary model for addressing the sparsity of topics in short text is the mixture of unigrams 

model (Qiang et al., 2020). This idea has been further extended by Lin et al. to a dual-sparse topic 

model (Lin et al., 2014). Other works address the sparsity issue by expanding the dimensionality, 

such as a bi-term model (Yan et al., 2013). We refer to two surveys on probabilistic topics 

addressing the issue of sparsity in short texts (Qiang et al., 2020; Vayansky and Kumar, 2020). 

While various modeling methods exist, limited attention has been paid to incorporating data and 

weak supervision into variational inference in topic models, which is the focus of what we propose. 
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Figure 10. Illustration.  A real-world scenario. The left-hand side is a Waze alert, which has 

nThumbsUp being constantly collected from online users to support the reliability of events. 

The right-hand side is the pool of tweets being posted within the same spatial-temporal 

window. In the real world, if an event has influenced a relatively small online community, 

the same event may have already influenced larger online communities, such as Twitter/X. 

Effective emergency response relies on robust information management practices including the 

application of topic models to collect, process, and analyze real-time data streams from diverse 

sources. These analyses are vital for detecting events, anomalies, emerging patterns, and ensuring 

the seamless operation of these systems. Topic models are particularly effective in event detection 

and information augmentation. In event detection, the objective is to measure the uniqueness of 

identified patterns in the data. In information augmentation, the goal is to match similar content 

from different information sources to pro-vide comprehensive context and background for users. 
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Technically, both tasks often employ topic models for either (1) data labeling (Fan et al., 2020; 

Salley et al., 2022; Tien et al., 2016; Wang et al., 2012) or (2) similarity measurement between 

topic distributions of two documents, (Yin and Allan, 2009; Zhang et al., 2017). The former serve 

as sources of data annotations for supervised/semi-supervised (Salley et al., 2022; Tien et al., 2016; 

Wang et al., 2012) classifiers, while the latter aims to retrieve lower dimensional representations 

for clustering analysis. For example, by computing the cosine similarity between the target and a 

potential candidate, we can assess the relevancy (Wang and Taylor, 2018; Yin and Allan, 2009) or 

uniqueness (Zhang et al., 2017) of the candidate compared to the central topic. 

6.2 Definitions and Preliminaries 

Problem Statements. Let 𝑡𝑡 ∈ [𝑇𝑇] represent discrete timestamps where [𝑇𝑇] = {1, 2, . . .}. We 

assume that at each 𝑡𝑡 ∈ [𝑇𝑇], we are provided with a set of tweets 𝐷𝐷𝐷𝐷 ⊂ D, where each 𝑑𝑑 ∈ 𝐷𝐷𝑡𝑡 is a 

vector in the bag-of-words format. In addition, we are given a binary label 𝑦𝑦𝑡𝑡 ∈ {0, 1}, but there is 

no guarantee that 𝑦𝑦𝑡𝑡 will arrive at timestamp 𝑡𝑡. It is common for 𝑦𝑦𝑦𝑦 to have a certain delay. A value 

of 𝑦𝑦𝑡𝑡 = 1 indicates the presence of some 𝑑𝑑 of interest, while 𝑦𝑦𝑡𝑡 = 0 indicates the absence of such 𝑑𝑑 

of interest. A real-world example of 𝑦𝑦𝑡𝑡 is the nThumbsUp illustrated in 1. We should manually 

tune a threshold 𝜏𝜏 such that if nThumbsUp > 𝜏𝜏 we set 𝑦𝑦𝑡𝑡 = 1 and 0 otherwise. 

We present the formulation of topic modeling in terms of dimensional reduction. That is: 

 

Problem 1. Given 𝐷𝐷𝑡𝑡, learn/update the parameters of a topic model H: D → R𝐾𝐾, where 𝐾𝐾 is the 

number of topics and Σ𝑘𝑘 H (𝐷𝐷𝑡𝑡) =1. 

 

Therefore, the output is a 𝐾𝐾 dimensional multinomial distribution over 𝐾𝐾 topics of 𝐷𝐷𝑡𝑡. Meanwhile, 

the confirmation model can be defined as follows: 
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Problem 2. Given 𝐷𝐷𝑡𝑡, learn/update the parameters of a reward function 𝑓𝑓: D × Y → R so that it 

will gain more reward if 𝑦𝑦𝑡𝑡 = 1 prior to the reveal of the ground truth 𝑦𝑦. 

 

It is important to note that Sub-problem 1 is an unsupervised learning problem and Sub-problem 

2 is supervised. Although, these two problems may initially appear independent of each other, the 

primary contribution of this study is to propose a model capable of effectively addressing both 

problems interactively in an online machine-learning setting. We will demonstrate that by 

simultaneously solving Sub-problem 2, which involves confirmation, along-side Sub-problem 1, 

the model can yield a more focused (or skewed) distribution of topics of interest. 

Table 12 provides a summary of all the notations used in this study and their corresponding 

descriptions. 

Table 12. Notations and Descriptions. 
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Variational Lower Bounds. Let 𝑍𝑍𝑡𝑡 represent all the latent variables of the topic models 

parameterized by 𝜃𝜃𝑡𝑡 = (𝜃𝜃¯, 𝜃𝜃ˆ𝑡𝑡) ∈ Θ, the variational lower bound of a topic model with given 𝐷𝐷𝑡𝑡 

is:  

log 𝑝𝑝 (𝐷𝐷𝑡𝑡 |𝜃𝜃𝑡𝑡 ) ≥ E𝑞𝑞 (𝑍𝑍𝑡𝑡 ) {log 𝑝𝑝 (𝐷𝐷𝑡𝑡 , 𝑍𝑍𝑡𝑡 |𝜃𝜃𝑡𝑡 )} − E𝑞𝑞 (𝑍𝑍𝑡𝑡 ) {log 𝑝𝑝 (𝑍𝑍𝑡𝑡 )}:= ℓ (𝜃𝜃𝑡𝑡 |𝐷𝐷𝑡𝑡 )       Equation 6.1 

 

where 𝑝𝑝 (𝑍𝑍𝑡𝑡 ) is the prior distribution and 𝑞𝑞(𝑍𝑍𝑍𝑍 ) is a variational posterior distribution we select. 

For generality, 𝜃𝜃𝑡𝑡 has parts 𝜃𝜃¯ independent of 𝑡𝑡. 

6.3 Proposed Method 

Online Machine Learning. Our method further requires that the topic models must have a K-

multinomial variational posterior. For instance, in LDA, there is a variational posterior of the per-

word 𝑤𝑤 ∈ 𝑊𝑊 topic assignment q (𝑍𝑍𝑑𝑑, = 𝑘𝑘) = 𝜙𝜙𝑑𝑑𝑑𝑑𝑑𝑑 [5]. In MUG, there is a variational posterior of 

per-document topic assignment (𝑍𝑍𝑍𝑍 = 𝑘𝑘) = 𝜙𝜙𝜙𝜙𝜙𝜙 [10]. The key idea of the interactive model is to 

introduce a linear reward function parameterized by 𝜋𝜋 ∈ R𝐾𝐾 such that 𝑘𝑘 𝜋𝜋𝜋𝜋 = 1. We assume 

LDA is the topic model for the rest of the section. The linear reward function is defined as: 

 

     Equation 6.2 

 

The linear rewards’ parameters 𝜋𝜋 interact with the LDA model via the posterior distribution such 

that: 

     Equation 6.3 

 

Taking a closer look at the linear function, when 𝑦𝑦𝑡𝑡 = 1, which happens when we have enough 

confidence to confirm the presence of relevant 𝑑𝑑 ∈ 𝐷𝐷t, the multinomial distribution 𝜙𝜙𝑡𝑡d𝑤𝑤𝑤𝑤 
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temporarily assumed given to us must be distinct from 𝑦𝑦𝑡𝑡 = 0. For maximizing Σ 𝑓𝑓 (𝜋𝜋t |𝜙𝜙𝑡𝑡,  , 𝑦𝑦𝑡𝑡) 

from t=1 to 𝑇𝑇’ for every 𝑇𝑇′ ∈ [𝑇𝑇 ], the problem is equivalent to the well-known online learning 

problem: learn from 𝐾𝐾 experts’ advice (Abernethy et al., 2014). 𝜋𝜋 is encouraged to assign more 

weights to the topics that frequently appear when 𝑦𝑦𝑡𝑡 = 1. 

The main idea is to maximize both the linear reward function and the variational lower bound of 

the topic models simultaneously. In the context of online convex optimization, we set (𝜃𝜃𝑡𝑡, 𝜋𝜋) = ℓ 

(𝜃𝜃𝑡𝑡 | 𝐷𝐷𝑡𝑡) + 𝑓𝑓 (𝜋𝜋 | 𝜙𝜙𝑡𝑡, 𝐷𝐷𝑡𝑡, 𝑦𝑦𝑡𝑡) and the benchmark of success is: 

 

     Equation 6.4 

 

subject to constraints: Σₖ 𝜙𝜙𝑡𝑡d𝑤𝑤𝑤𝑤 = 1 and Σₖ π𝑡𝑡𝑘𝑘 = 1. Recall that 𝜙𝜙𝑡𝑡 ∈ Θ and R is the regret function. 

 

An Online Algorithm. To solve the online problem, we derive an online algorithm with a 

theoretically guaranteed bound on the regret function R. Due to page limit, we only present the 

iterative updates on 𝜋𝜋𝜋𝜋 and 𝜙𝜙𝑡𝑡 and refer to (Hoffman et al., 2020) for the rest of the other 

parameters’ updates. 

For LDA, there are two additional prior distributions: 

𝛽𝛽𝑘𝑘 ∼ Dirichlet (𝜂𝜂)         Equation 6.5 

where 𝛽𝛽𝛽𝛽 ∈ R|𝑊𝑊 | is a distribution over words for each topic. Besides, for each document 𝑑𝑑 

𝜉𝜉𝑑𝑑 ∼ Dirichlet (𝛼𝛼)         Equation 6.6 

where 𝜉𝜉𝑑𝑑 ∈ R𝐾𝐾 is a distribution over topics. 𝜂𝜂, 𝛼𝛼 ∈ R are two scalar hyperparameters of the model, 

which define the Dirichlet priors to be symmetric. 

The variational inference of LDA also requires the variational posteriors of (𝛽𝛽𝑘𝑘) and (𝜉𝜉𝑑𝑑). They 
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are: 

q(𝛽𝛽𝑘𝑘) = Dirichlet (𝜆𝜆𝑘𝑘)         Equation 6.7 

and  

q(𝜉𝜉𝑑𝑑) = Dirichlet (𝛾𝛾𝑑𝑑)         Equation 6.8 

  

where 𝜆𝜆𝑘𝑘 ∈ R|𝑊𝑊 | and 𝛾𝛾𝑑𝑑 ∈ R𝐾𝐾 are vector parameters. In terms of 𝜃𝜃t, 𝜆𝜆 = 𝜃𝜃 since it does not depend 

on time 𝑡𝑡, and (𝛾𝛾𝑡𝑡, 𝜙𝜙𝑡𝑡) = 𝜃𝜃ˆ𝑡𝑡 since the document 𝑑𝑑 ∈ 𝐷𝐷𝑡𝑡 depends on time 𝑡𝑡. 

 

Assuming a given learning rate 𝜌𝜌𝑡𝑡, our online algorithm relies on incremental updates from each 

sub problem’s optimum at 𝑡𝑡. For each 𝑡𝑡 ∈ [𝑇𝑇], the sub problem is: 

      Equation 6.9 

 

where an ℓ-2 regularizer, ||π||2, is added to the objective. The incremental updates for these two 

time-independent variables are: 
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       Equation 6.10 

 

       Equation 6.11 

In addition, solving 𝜙𝜙𝑡𝑡𝑑𝑑 is different from the above online problem as the solution in nature depends 

on time 𝑡𝑡. The sub problem for 𝜙𝜙𝑡𝑡 given 𝜋𝜋𝑡𝑡 and 𝜃𝜃𝑡𝑡 attained from the updates is: 

      Equation 6.12 

 

The above sub problem has a closed-form solution as well: 

     Equation 6.13 

 

This equation implies that if yt = 1 and the topic weight for confirmation πt
k is small, 𝜙𝜙𝑡𝑡d𝑤𝑤𝑤𝑤 tends to 

be zero. If yt = 0, we recover the same update as in (Blei et al., 2003; Hoffman et al., 2010). 

Algorithm 1 describes all computations for each 𝑡𝑡 ∈ [𝑇𝑇]. Overall, we repeat the computations of 

the two time-dependent parameters 𝜙𝜙t
d and 𝛾𝛾t until the convergence of 𝛾𝛾t is satisfied. 

6.4 Experiments 

To verify the effectiveness of our augmented model, we experimented with real-world data. We 

considered two standard probabilistic models, LDA and MUG, due to their efficient variational 

inference (Blei et al., 2003; Hoffman et al., 2010). Importantly, our method is compatible with any 

probabilistic topic model featuring a multinomial per document-topic variational posterior 

distribution, a structure found in many existing models (Lin et al., 2014; Yan et al., 2013; Yin and 

Wang, 2014). Future research may explore integrating our approach with other topic models. We 

employed our model for two key downstream tasks in information science: data labeling and 

similarity measurement. The first task involves obtaining interpretable topic representations and 
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assessing clustering correlation with human-generated labels. The second task leverages the 

representational space to reveal semantic content similarities and dissimilarities between 

documents. 

Data and Ground Truth Labels  

Hurricane-related Tweets. We will conduct experiments on a real-world Twitter/X dataset during 

Southern US hurricanes to evaluate disaster information augmentation in real-world applications 

(Salley et al., 2022; Tien et al., 2016). The dataset includes manually generated labels for five 

different classes. The data set consists of geotagged tweets collected from three hurricanes that 

occurred in Florida in 2020: Hurricane Eta (31/10/2020-14/11/2020), Hurricane Isaias (31/7/2020-

4/8/2020), and Hurricane Sally (14/9/2020-28/9/2020). The entire data set consists of 10,210 

tweets, which are evenly distributed over the first four categories of events as below: 

(0) Broadcast/News - Includes tweets related to news, government updates, alerts, and 

official sources information. 

(1) Power - Includes tweets related to power outages, power lines/systems, lights, Wi-Fi, 

Internet connectivity, etc. 

(2) Traffic Incident - Includes tweets related to car crashes, road congestion, evacuations, 

traffic updates and incidents. 

(3) Forecast/Weather - Includes tweets related to weather conditions, forecasts, rainfall, 

flooding, etc. 

(4) Miscellaneous - Includes tweets that do not fit into other categories or are unrelated to 

the disaster. 

Waze. A Waze alert is in a standardized schematic of Type plus Subtype and Description. An 

example of a traffic alert is provided: 
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alert: Traffic Accident, Minor Accident o𝑛𝑛𝑛𝑛 − 75, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑒𝑒𝑒𝑒𝑒𝑒 

The content of these alerts tends to be similar due to the limited format and the specific categories 

used to describe the incidents. This categorization enables rapid identification of the alert’s nature, 

including incident type (e.g., accident) and severity (e.g., minor). 

Metrics  

Perplexity. We use perplexity on out-of-sample data as a model fit measure (Hoffman et al., 2010). 

Perplexity is defined as the geometric mean of the inverse marginal likelihood of each word in the 

tweet set. 

Topic Coherence. The two downstream tasks necessitate that topic representations are 

interpretable for readers. Topic Coherence (TC) measures the degree of semantic similarity among 

high-scoring words (top 15 in our case) (Röder et al., 2015). We employ the "Umass" version of 

TC (Mimno et al., 2011), which calculates the word-wise score function based on the document 

co-occurrence of the two words. The overall score is obtained by summing the score of every 

word-word pair and taking the average among all topics. 

Adjusted Mutual Information. Normalized Mutual Information measures the agreement between 

two clusters and quantifies the similarity between two cluster assignments (Vinh et al., 2009). In 

our experiment, we have labeled tweets in 5 categories, denoted as 𝐶𝐶 ∈ [𝐾𝐾]. To match the number 

of classes, we set 𝐾𝐾 = 5 resulting in an assignment score into 5 clusters. For each tweet 𝑑𝑑 ∈ 𝐷𝐷, we 

assign it to the cluster with the highest score denoted as 𝐶𝐶′ ∈ [𝐾𝐾]. The mutual information is 

measured as: 
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Normalized Mutual Information (NMI) is a normalization of mutual information, which scales the 

score between 0 and 1. A higher NMI score indicates a higher level of agreement between the two 

clusters. The Adjusted Mutual Information (AMI) is an extension of NMI that takes into account 

the size of clusters, making the score independent of size 𝐾𝐾. 

Recall. The recall score of a binary classification model is computed as follows: 

 

 

 

Experiment Designs  

We conducted our experiments in an online machine-learning set-ting using real-world data but 

with simulated streams for event types of Traffic Incident and Forecast Weather. In the simulation, 

at each time step 𝑡𝑡, a batch of tweets and a binary label 𝑦𝑦𝑡𝑡 are sampled. The batch size is uniformly 

distributed between 10 and 15. If 𝑦𝑦𝑡𝑡 = 1, relevant tweets related to the targeted event type were 

included in the batch, ranging from 5 to 1, while the remaining tweets were randomly selected 

from the Miscellaneous class. The label 𝑦𝑦𝑡𝑡 was only revealed to the model after 𝑡𝑡. Additionally, to 

test the robustness of the model, the accuracy of 𝑦𝑦𝑡𝑡 could be compromised to some extent. The 

overall expectation of the model augmented with the confirmation we proposed is that it will 

gradually outperform the baseline model in all evaluation metrics regardless of the perturbation in 

𝑦𝑦𝑡𝑡 and 𝐷𝐷𝑡𝑡. 

Hyper-parameters. In our online machine learning framework we consider several hyper-

parameters that impact the performance of the model: (1) 𝐾𝐾 the number of topics, (2) 𝜌𝜌𝑡𝑡 , the step 

size of updating parameters at each step, (3) 𝑁𝑁 , the number of runs of each experiment, (4) 𝑒𝑒𝑒𝑒𝑒𝑒, 

the hyperparameter of the prior 𝛽𝛽, and (5) 𝛼𝛼, hyperparameter of the prior 𝜉𝜉. Throughout the 

experiments, we take 𝜌𝜌𝑡𝑡 = (𝑡𝑡 + 2)−0.7 for 𝑡𝑡 ∈ [𝑇𝑇] and 𝛼𝛼, 𝜂𝜂 = 1/K. We enumerate 𝐾𝐾 from the set of 
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{5, 12, 15, 21}. Let 𝑁𝑁 = 30. All experimental results are aggregated from the 𝑁𝑁 samples. For 𝑦𝑦𝑡𝑡, 

we test a label accuracy of {70%, 80%, 90%}. The experiments are performed on a computer with 

AMD Ryzen 7 5700G 3.80GHz CPU, 16GB memory, and NVIDIA Ge-Force RTX 3060 graphics. 

Labeling Data. A core task in employing topic modeling in information studies is to label data 

based on the clusters inferred by the models (Salley et al., 2022; Tien et al., 2016). We adhered to 

the standard practice of randomly reserving 10% of the data as a test set for each run. We then 

evaluated the AMI between the ground truth labels and the cluster assignments obtained from the 

topic model, considering a total of 𝐾𝐾 = 5. 

Matching Similar Tweets. For each Waze alert, one of the experiments in this study is to match 

its content with tweets found in a nearby spatial-temporal window. We, therefore, treat a Waze 

alert as another tweet and compute the cosine similarity scores of every other tweet within the 

specified window. 

For each 𝑦𝑦𝑡𝑡 = 1 revealed afterward, we retrieve the top 5 tweets with the highest similarity scores, 

considering them as the predicted relevant tweets. We assess the success of this matching process 

by reporting the recall. Note that we do not compare the models based on precision. This is because 

the baseline methods employed in this study are inherently unsupervised, meaning they do not 

utilize 𝑦𝑦𝑡𝑡. Consequently, the unsupervised topic model consistently output matched tweets, 

regardless of 𝑦𝑦𝑡𝑡, which results in low precision. 

Baseline. To demonstrate the effectiveness of the augmented models, we also include a baseline 

model with: 

πₖ = 1 / K 

The parameters remain constant throughout the online experiment. We use Online Mixture of 

Unigrams (OMUG) and Online Latent Dirichlet Allocation (OLDA) to denote the baseline models. 
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6.5 Results 

Convergence and Fit. The perplexity of all models is presented in Figure 11. Each sub-figure 

represents instances of LDA and MUG, along with their respective 95% confidence intervals. The 

results indicate that the convergence criteria are satisfied. The inclusion of the augmented linear 

reward function and the new posterior does not impede the training of the topic models. All models 

exhibit a good fit when measured on the held-out evaluation dataset. In general, when the value of 

𝐾𝐾 is large, we can anticipate that the model will require more computations to converge. 

For 𝐾𝐾 = 21, the LDA model augmented with the component we proposed takes 60 timestamps, 

denoted as 𝑡𝑡, to reach a similar perplexity level as a baseline LDA model using variational 

inference with 40 timestamps. However, for MUG model, when 𝐾𝐾 = 21, the augmented version 

never reaches the same level of perplexity as the baseline within 100 iterations. In addition, LDA 

exhibits slower convergence when the accuracy of 𝑦𝑦𝑡𝑡 goes down. In contrast, MUG demonstrates 

robustness under the uncertainty of 𝑦𝑦𝑡𝑡. 

It is important to note that the convergence on the held-out dataset does not necessarily prevent 

overfitting of the models. This consideration holds significance when analyzing the other 

experimental results presented below. 

Interpretability of Topics. Our second remark is that our method significantly improves the 

semantic interpretability of topics in terms of topic coherence. As shown in Figure 12, the 

augmented LDA significantly outperforms the baseline LDA after 50-60 iterations. Moreover, the 

advantage of our augmentation method becomes more prominent as 𝐾𝐾 increases. When 𝐾𝐾 = 15 

and 𝐾𝐾 = 21, the baseline LDA tends to be overfitted after 50 iterations as evidenced by a continuous 

decrease in TC. The augmented LDA does not have this issue under all settings. 



 

86  

 

Figure 11. Graphs. The Perplexity of Models in 𝑡𝑡. 

With regard to MUG, it is worth noting that a baseline MUG already outperforms LDA, with the 

optimal value ranging from -9 to −9.5. This observation aligns with previous studies on topic 

models for short texts (Qiang et al., 2020). The one-text-one-topic assumption of short text is more 

reasonable than a mixture of topics, especially for tweets (Yan et al., 2013). Nevertheless, our 

method results in faster convergence in terms of TC, usually within 10 iterations when 𝐾𝐾 is large. 

For small 𝐾𝐾, the increase is marginal. The overfitting problem arises again as there is a drop of TC 

in augmented MUG 𝐾𝐾 = 21 after 80 iterations.  

In summary, our method transforms LDA, which was not initially considered suitable for short 

texts, into a competitive model compared to MUG. 
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Figure 12. Graphs. The Topic Coherence of Models in 𝑡𝑡. The Y-axis is the Perplexity. X-

axis is the number of timestamps 𝑡𝑡. 

Labeling Data for Classifications. To evaluate the effectiveness of the proposed method on 

labeling data, we computed the AMI between ground truth labels and cluster assignments of the 

held-out data set for 𝐾𝐾 = 5. Figure 13 presents the results of the AMI for all models. It is evident 

that augmented LDA consistently outperforms the baselines. Augmented MUG, however, peaks 

at 60-80 iterations, then dramatically decreases and becomes worse than the baseline model. We 

identify the drop as another evidence of the overfitting of MUG. The results suggest to use of LDA 
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for data labeling, supported by empirical evidence of superiority, and is consistent with (Salley et 

al., 2022; Tien et al., 2016). 

Interestingly, our method under the worst 𝑦𝑦, a 70% of accuracy, has the optimal AMI in both LDA 

and MUG. We investigated this observation in-depth and provided explanations for it. First, note 

that the augmented LDA with 80% accuracy is the worst case, which confirms that a higher 

accuracy does improve the model in terms of AMI. Both 80% and 90% suffer from overfitting as 

indicated by the nearly identical drop in MUG. The presence of 30% of noisy tweets accidentally 

expands the training data set, which mitigates the over-fitting issue and contributes to an LDA and 

a delay of drop in MUG. The analysis suggests that our results can be sensitive to data and hyper-

parameters, such as the incremental update rate 𝜌𝜌𝑡𝑡. We will discuss it in the limitations section.  

Similarity Measure. Figure 14 shows the recall of matching similar tweets with a single Waze 

alert. For better visualization, we only present two cases of accuracy, 90% and 70%. The case of 

80% is omitted since it closely resembles the other cases in LDA and it overlaps with the baseline 

in MUG. The experiment of matching similar tweets is greatly dependent on chosen 

hyperparameters, particularly on 𝐾𝐾 and label accuracy. As seen, the augmented LDA outperforms 

the baseline LDA across all uncertainties when 𝐾𝐾 = 12.  

 

 

Figure 13. Graphs. The Adjusted Mutual Information of Models in 𝑡𝑡. 
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The recall is compromised by the lower accuracy of 𝑦𝑦𝑡𝑡 and it is below the baseline for a 70% of 

accuracy. Other 𝐾𝐾 either have slightly inferior performance or marginal merit compared to the 

baseline. The augmented MUG dominates the baseline under 90% accuracy of 𝑦𝑦𝑡𝑡 and it is 

marginally enhanced compared to the baseline. Overall, the experimental findings highlight the 

influence of hyperparameters on the performance of matching similar tweets and reinforce the 

advantages of our augmented models over baselines. 

 

 

Figure 14. Graphs. Recall of Matching Similar Tweets in Models at 𝑡𝑡. 

6.6 Case Study 

To demonstrate the effectiveness and potential application of the proposed method in the real 

world, we also performed a case study using real-world data streams. We utilized an unlabeled 

data set consisting of Waze data and tweets from 10/18/2021 to 10/31/2021 within 115 bounding 

boxes covering Georgia, USA. The entire dataset consists of about 12,000 events and over 600,000 

geo-tagged tweets with lengths greater than 5. For each Waze incident, we recorded the debut time, 

the current time of API calls, and the number of thumbs-ups from other users. We consider tweets 

as potential matches if their debut time is within a 30-minute time window and in the same 

bounding box. To label the matches, we set 𝑦𝑦𝑡𝑡 = 1 if the number of thumbs-ups is above 3, and 𝑠𝑠𝑠𝑠 

= 0 otherwise. For each Waze alert with 𝑦𝑦𝑡𝑡 = 1, we apply an LDA model, 𝐾𝐾 = 21, augmented with 
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the confirmation part to output the top four similar tweets. We randomly sampled five instances 

from the results, and they are presented in Table 13. 

Table 13 shows successful cases of implementing the augmented LDA with real-world data. 

Nevertheless, it is important to note that the bounding boxes used in the filtering process do not 

completely eliminate other incidents that may be spatially/temporally close to the target incident. 

6.7 Conclusion 

Our research highlights the critical role of online probabilistic topic models in enabling the real-

time analysis of complex data streams. These models empower infrastructure operators and 

decision-makers to extract actionable insights, detect anomalies, make precise predictions, 

optimize resource allocation, engage users, and leverage social feedback. However, traditional 

probabilistic topic models face challenges when applied to user-generated content, which is often 

sparse and dynamic. We propose a novel framework that integrates a linear reward function, 

guided by the confidence levels associated with relevant content, into the variational lower bound 

of the likelihood of Bayesian topic models.  

This innovative approach enhances topic retrieval, improving interpretability and generalizability 

across various topic models. Our empirical experiments and case study, conducted on real-world 

datasets, showcase the effectiveness of our learning algorithm in enhancing topic models through 

two important downstream tasks: information augmentation and event detection. It significantly 

improves topic interpretability, data labeling precision, and similarity metric refinement, making 

it a valuable tool for processing and analyzing real-time data streams. 
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Table 13. Relevant Tweets of Bounding Box 1, Accident and Jam. Blue texts indicate a 

truth positive, Red texts describe incidents that occurred in nearby bounding boxes. 

  
 

The effectiveness of our online confirmation-augmented probabilistic topic modeling approach for 

processing real-time data streams contributes to informed decision-making, efficient infrastructure 

management, and proactive engagement with evolving conditions. Our approach shows potential 

for unlocking new insights and addressing integration challenges. 
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6.8 Limitations and Future Work 

One of the limitations of this model is the relatively limited exploration of hyperparameters. We 

acknowledge that the choice of hyperparameters, including the update weight 𝜌𝜌𝑡𝑡 = (𝑡𝑡 + 2)−0.7, is 

somewhat arbitrary and not optimized for all models. This update rate is not suitable for MUG as 

it resulted in overfitting within just 50 iterations. The update rate should decay at a much faster 

rate compared to the one used for LDA. Additionally, other initialization hyper-parameters, such 

as 𝜌𝜌0, 𝜂𝜂, and 𝛼𝛼, can all impact the performance of the two downstream tasks. In general, these 

hyperparameters should be fine-tuned for each specific model augmented with our proposed 

component. However, we adopted the default settings from (Blei et al., 2003; Hoffmanet al., 2010). 

In addition, our exploration was limited to a small parameter set, with 𝐾𝐾 values chosen from 5, 12, 

15, 21, due to the considerable time required to complete each experiment (around 1.5 hours in 

average). We recognize the need for a more thorough investigation of hyperparameters as a future 

endeavor. This would entail refining, parallelizing, and addressing numerical issues in the current 

code implementation. 

Another perturbation that our method is sensitive to is the accuracy of 𝑦𝑦. Initially, we anticipated 

that our method could still perform accurately with a 55% accuracy. However, the results indicate 

that an accuracy less than 70% will significantly compromise the performance of our method, see 

Figure 14 for the case of OMUG. We suspect that the bi-linear function may not be robust enough 

to handle noise in 𝑦𝑦𝑡𝑡. Exploring alternative stable functions as potential augmentation components 

is an avenue for future research.  
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7 CONCLUSION 

The accuracy and timeliness of crisis communications depends on the scale of participation and 

coverage of the user population. Community awareness applications (e.g., Waze) allow individuals 

to raise concerns, gather insight, and report targeted information. Social media platforms (e.g., 

Twitter/X) cover large numbers of active users and can be an additional source to identify and 

describe ongoing incidents. Matching multiple streams of crisis communication (e.g., Waze alerts 

and tweets) can be challenging considering the heterogeneous formats and the online nature of the 

data, however, harnessing the powers of both can be advantageous and complement one another. 

To address this gap in knowledge and functionality, we: 1) conducted interviews with state DOTs 

to gain insight on current systems and potential barriers to implementing social media, 2) designed 

and tested a competency matrix on potential current applications and solutions, and 3) designed 

our own Machine Learning based applications for data integration and augmentation of community 

data with social media for DOT event detection.  

Our project highlighted challenges faced by state DOTs in integrating social media into their 

systems. Despite the potential advantages, they face challenges due to the complexity of processing 

large volumes of data and extracting pertinent information. We then investigated existing event 

detection software that could integrate social media data streams. We evaluated 12 event detection 

software applications using a weighted competency matrix developed for this project. This 

assessment revealed a lack of adopted software within DOTs for processing Twitter/X and other 

social media data. Additionally, our examination of disaster response strategies in published 

reports on completed and in-progress transportation research projects showed promise for but a 

general lack of application of AI/ML models for rapid crisis event detection and providing 

essential contextual information for emergency responders. To address this gap, we developed and 
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applied solutions involved training models using combined data from social media platforms (e.g., 

Twitter/X) and community-driven applications (e.g., Waze). The first model showcased the 

effectiveness of crisis event detection when social media data is fused with community-driven 

applications. This first model notably implemented the Wells-Dubois protocol, contributing to bias 

minimization in event detection outcomes. The second model introduced an enhanced approach 

for real-time online probabilistic topic modeling. By integrating a linear reward function into the 

variational lower bound of Bayesian topic models, when applied to a real world disaster scenario, 

this model exhibited improved effectiveness in topic retrieval, interpretability, and 

generalizability, thereby enhancing information augmentation and event detection. This project 

lays the foundation for an integrative approach to augmenting community-driven applications with 

social media data, providing transportation agencies with enhanced crisis event detection 

capabilities in terms of the speed of and confidence in alerts generated by community-driven 

applications such as Waze. The findings presented here offer practical insights and innovative 

solutions, contributing to a more resilient and responsive future for transportation crisis event 

management. 
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8 APPENDICES 

8.1 Appendix A. Interview Protocol 

Thank you for meeting with us. We are conducting a research project for the Georgia 

Department of Transportation to explore technological solutions that enable GDOT to take 

advantage of social media interactions (e.g., Twitter and Waze) to improve the speed and 

accuracy of identifying potential issues needing to be addressed on the highway system, while 

also providing the ability to interact with the public through social media about identified 

incidents or issues. We understand you adopted (insert system adopted) and would like to 

discuss that experience with you. 

First, we have a few questions about when you were making the purchasing decision to 

implement (insert system adopted): 

• What aspects of your operations were you hoping to improve that drove the need to look 

for a solution? 

• In a sentence, what was your goal or objective? 

• What specific functionalities were you interested in and why? 

• What social media features of (insert system adopted) interested you, if any? 

• Did your DOT have security/privacy concerns with such a solution and, if so, how were 

they addressed? 

Second, we have a few questions on the implementation process for (insert system adopted): 

• How long did it take from the decision to purchase until the vendor began installation? 

Was it more or less than expected? 
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• How long did it take to install (insert system adopted) into your systems and processes? 

Was it more or less than expected? 

• Can you describe any technology challenges associated with the implementation? Were 

there more or less challenges than expected? 

• What internal DOT resources were required to support the implementation of (insert 

system adopted)? Was it more or less than expected? 

• What internal DOT resources are required to run (insert system adopted) now that it is up 

and running? Is it more or less than expected? 

• How were and are DOT employees trained on the utilization of (insert system adopted)? 

Is it more or less training requirements than expected? 

• What metrics to you use to evaluate the success of (insert system adopted) in your DOT? 

• How would you describe the vendor’s role in supporting implementation and on-going 

operations? Does it meet your expectations? 

Finally, we have a few high level questions about how it is working out: 

How does (insert system adopted) help you to identify incidents or issues on the state highway 

system? 

How does identifying issues with (insert system adopted) differ from how you did it before? 

All-in-all, after implementing (insert system adopted) do you think the process of identifying 

issues on the state highway system: 

• Is faster with (insert system adopted) (why or why not)? 

• Is more accurate with (insert system adopted) (why or why not)? 

• Better engages the public (why or why not)? 
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• The functionalities you were originally interested in work as expected (why or why not)? 

• The overall goal or objective of implementing (insert system adopted) was met (why or 

why not)? 

Did you consider any of these other solutions? If you considered any of them, are you able to 

share why you did or did not purchase it? 

Do you know of other DOTs that have implemented (insert system adopted) and would you be 

willing to put us in touch with them to discuss their experience adopting and implementing 

(insert system adopted)? 

Is there anything we should have asked in the interview or that you think GDOT should know? 
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